
1

Personal Code: kbf569

Computer Science Extended Essay

A Comparison of Genetic Algorithms and Particle

Swarm Optimization Algorithms

Research Question:

How does the genetic algorithm compare to that of the particle

swarm optimization algorithm in providing solutions to optimization

problems in terms of speed and accuracy?

Word count: 3997

CS EE World
https://cseeworld.wixsite.com/home
November 2022
29/34
A
Submitter Info:
Name: Jack Cantwell
Email: jack [dot] cantwelljc [at] gmail.com

2

Table of Contents

INTRODUCTION ... 3

THEORY ... 4

OPTIMIZATION PROBLEMS ... 4
OPTIMIZATION ALGORITHMS .. 5
GENETIC ALGORITHMS .. 7
PARTICLE SWARM OPTIMIZATION ALGORITHMS ...10
HYPOTHESIS & APPLIED THEORY ...13

METHOD.. 13

INDEPENDENT VARIABLES ...13
DEPENDENT VARIABLES..16
CONTROLLED VARIABLES ..17
PROCEDURE ..19

DATA PROCESSING ... 19

CONCLUSION ... 24

BIBLIOGRAPHY ... 25

APPENDICES .. 28

APPENDIX A: PROGRAMS USED IN THE EXPERIMENT ..28
APPENDIX B: EXAMPLE CODE ...30
APPENDIX C: RAW DATA ...31

 3

INTRODUCTION

This primary focus of this essay is to investigate different metaheuristic strategies for

optimization, specifically genetic algorithms, and particle swarm optimization (PSO)

algorithms. In computer science and mathematics, an optimization problem is a problem that

involves finding the best solution out of all possible solutions (FrancQ, 2011). One method of

solving an optimization problem involves a brute-force search (or exhaustive search) which

involves listing all the possible solutions of a problem and searching for the “correct” or most

optimal solution. However, for problems with a high time complexity, the brute-force

approach becomes infeasible. Time complexity is the term used to refer to the amount of

time taken by an algorithm to run given the amount of input values (Great Learning Team,

2022). Some optimization problems such as the famous travelling salesman problem (TSP), a

problem in which one must minimise the total route distance between N number of cities,

have a time complexity class of factorial time, meaning that for N number of cities, the total

number of operations (possible routes) is N factorial (Chase, et al., Not dated). The problem

takes too long and requires large amounts of computing resources to run, hence why some

optimization problems are better solved using heuristics and metaheuristics. Heuristics are

techniques that are adapted to the specific problem and are quicker than a brute-force

search, such as the nearest neighbour method for the TSP where the salesman chooses the

nearest unvisited city as the next move. A metaheuristic is a higher-level problem-

independent method that can be applied to most optimization problems (Glover & Sörensen,

2015). Examples of metaheuristics are genetic algorithms and particle swarm optimization

algorithms, among many others. What struck me as interesting about so many of these

metaheuristics is the heavy inspiration from biology and how the field of computer science

attempts to mimic nature. Genetic algorithms use biological processes such as natural

selection, evolution, mutation, and gene crossover whereas particle swarm algorithms mimic

swarm-like intelligence, such as birds hunting for food. These algorithms are used in various

industries and are incredibly useful in optimizing a variety of things such as NASA using

evolutionary algorithms to design a more efficient antenna (Lohn, et al., 2005). Hence

comparing two algorithms to see which is superior and more suitable for use in the real world

can lead to many discoveries in the field of science and is worthy of investigation. There are

 4

two large branches of metaheuristics, one that mimics evolutionary mechanisms and one that

mimics swarm-like behaviours. Choosing one algorithm from each category and comparing

them would not only show which algorithm is better but could also suggest that a certain

method (evolutionary or swarm intelligence) is better than the other. Two major factors of

good metaheuristics are speed and accuracy, as the algorithm needs to be fast enough to be

worth using but must also be accurate enough to provide an appropriate answer to the

problem. All these factors gave light to the research question: “How does the genetic

algorithm compare to that of the particle swarm optimization algorithm in solving

optimization problems in terms of efficiency and accuracy?”. The criteria for efficiency and

accuracy will be discussed further in the method section of the essay.

THEORY

Optimization Problems

An optimization problem is a problem that consists of finding the best solution out of all

feasible solutions, a finite set of variables. Optimization problems can be split into two

categories: combinatorial and continuous. Combinatorial optimization problems consist of

solutions of only certain values with distinct spaces between values (e.g., whole numbers)

whereas continuous optimization problems consist of a constant sequence of solutions and

can take any value within a range. For each instance within a combinatorial optimization

problem, the instance is defined by a pair (F, c) with F representing the search space and c

representing the ‘cost’ or ‘fitness’ for each solution of F (for example with the travelling

salesman problem the ‘cost’ would be the distance of the specific route, F). (FrancQ, 2011)

The cost function or fitness function is also more commonly referred to as the objective. To

optimise the problem, one typically is aiming to find the maximum or minimum of objective

function, for example, in the TSP the aim is to find the shortest distance between the cities

thus the objective is to find the lowest possible value of the objective function otherwise

known as the minimum of the function.

 5

Another distinction within optimization problems is unconstrained optimization and

constrained optimization. The distinction arises between whether there are constraints on

the variables or not, for example the constraints could simply be bounds on the variables such

as f(x) ≥ 0. These constraints can either be soft constraints, which simply have variables that

are penalised in the objective function, or hard constraints, which are conditions that must

be met (Wikipedia, 2022). A large range of characteristics and qualities of optimization

problems will be looked at further when developing the test set for the experiment later in

this essay.

Optimization Algorithms

Optimization algorithms are iterative procedures that involve comparing various solutions

until an exact or possible optimal solution to an optimization problem is found. (Mechanical

Engineering at IIT Madras, No date).

Figure 1 categorises different optimization algorithms in different steps and arises new and

relevant categorisations and methods of optimization algorithms such as exact, approximate,

linear and non-linear programming, global search, local search, population-based, and

single-solution based. Not all the terms mentioned in the graph are relevant to this essay, so

only certain terms will be discussed however many of the terms relating to optimization

problems are relevant as it is important to include a range of problems in the test set when

evaluating the efficiency and accuracy of an optimization algorithms. Initially the

categorisation is based on the optimization problem that the algorithm is being used to solve,

whether it is a continuous or combinatorial (discrete) problem. If the problem is continuous,

the next distinction is whether the problem is linear or non-linear. Linear programming is a

process of solving an optimization problem where the constraints and objective function are

both linear relationships (Luenberger & Ye, 2008) Whereas non-linear programming involves

a problem where either objective and/or constraints consist of a non-linear relationship.

Global search methods for continuous problems, along with approximate solutions to

combinatorial problems lead to the choice of a heuristic, a meta-heuristic, or a random search

to provide a solution. Out of the three options of heuristic, meta-heuristic and random search,

meta-heuristic branches off into another classification dimension of single-solution or

 6

population-based search. The, the single-solution based search focuses on improving a single

candidate solution. The population-based method improves on multiple candidate solutions

and is the focus of this essay. Genetic algorithms are found under the evolutionary algorithm

category of population-based searches and particle swarm optimization algorithms are

classified under swarm intelligence.

Figure 1: Classifying optimization algorithms based on aspects from the optimization

problem being solved and the optimization method (Kumar, 2020)

 7

Genetic Algorithms

Genetic Algorithms were created by John Holland in the 1960’s, the goal of this was to study

the concept of adaption in nature and develop ways of importing biological processes such as

natural adaption into computer systems. (Mitchell, 1999)

As briefly touched on, a genetic algorithm is a metaheuristic, stochastic, global search

optimization that falls under the category of Evolutionary Algorithms. Evolutionary algorithms

are inspired by the mechanisms of biological evolution and have three main characteristics:

population-based, fitness-oriented (fitness value given to each individual solution), and

variation-driven (random changes in the solution from iteration to iteration). (Gad, 2018)

The processes of genetic algorithms can be distinguished into five phases:

1. Creating the initial population

2. Calculating the fitness of each solution

3. Selection

4. Gene crossover

5. Gene mutation

Creating the Initial Population

Creating the initial population for the genetic algorithm requires encoding the solutions into

“chromosomes”. Each individual candidate needs to be encoded into strings of numerical

values, commonly the solutions are encoded into binary (0s and 1s) and the solution is

comprised of an array of parameter values called “genes” and these strings of genes are what

forms the chromosomes. (Dutta, 2021) The chromosome can also be referred as the genotype

which is defined as the set of instructions to be decoded to form the phenotype which is used

as an evaluable solution. (Manning, et al., 2012). Figure 2 shows a possible genotype and

phenotype the travelling salesman problem, each city in the array of parameters is a gene and

the arrangement of genes forms the chromosome or genotype, this can be mapped to create

a phenotype and presented in a form that is easily evaluable. If the optimization problem is

continuous, the ‘chromosomes’ for each solution is generated by the position in the search.

 8

E.g., if the problem were to have 2 dimensions, x and y, then the ‘chromosome’ for a solution

could look like x, y = [49.35, 89.57].

The initial population is comprised of a set of chromosomes of randomly assigned values

within the specified search space, this forms the first generation of solutions.

Figure 2: A possible genotype and phenotype representation for the TSP. (Manning, et al.,

2012)

Calculating the fitness of each solution

Each candidate solution is evaluated by the fitness function, the function that the algorithm

is attempting to optimise, and gives a measure to how close a given solution is to achieving

the optimum. At each iteration or generation, each solution in that iteration is assigned a

fitness or cost value. In optimization problems where there are constraints (such as an

inequality equation of x≥0), sometimes a penalty method is used when a solution. This

involves multiplying the cost value by a penalty parameter that is calculated by measuring the

extent of the breach of the constraint (a more severe violation results in a more severe

penalty), this is called a soft constraint. (Solmaz Kia, No date)

Selection

After each generation has been assigned a fitness value by the objective function, the next

process is to select the “parents” whose genes will be used to create the next generation of

 9

solutions (the offspring). Typically, the selection algorithms favour the individuals with the

most optimal fitness and are selected to produce the offspring. (Manning, et al., 2012).

Gene crossover

In the crossover stage of the genetic algorithm, the genes of two parents (selected using the

specific selection algorithm) from the current generation are crossed over to create a set of

offspring. An example of a type of gene crossover is one-point crossover (see Figure 3), where

a crossover point on the string of parents is selected, and all genes after this point are

swapped and this creates 2 offspring. (Dutta, 2019). However, in some optimization problems,

not all assortments of chromosomes represent a valid solution (such as in the TSP, which

needs one of each city in the solution, and not two of the same city) so many specialised

crossover methods have been developed for similar problems. One of the parameters of the

genetic algorithm is the crossover rate, which is the probability that two chromosomes cross

genes in order to make the new population, or whether the population is entirely made up of

certain chromosomes from the previous generation (0% crossover rate) (Chehouri, et al.,

2016).

Figure 3: Diagram showing one point crossover (Kaya, 2011)

Mutation

After a new generated has been created through selection and crossover, mutation occurs.

Mutation refers to the random modification of a chromosome and the probability of this

occurring is controlled by the mutation rate (Manning, et al., 2012). Mutation is closely

 10

related to the exploration of the search space and allows the solutions to randomly ‘jump’

across it. It also can prevent the algorithm from getting trapped in local minima as mutation

can cause a solution to ‘jump’ out of it and potentially find a fitter location. Its main role is to

maintain genetic diversity in the population. (Abdoun, et al., Not dated)

Additional Parameter: Elitism

Elitism allows the best performing solution(s) in a generation to proceed into the proceeding

generation unmodified (Manning, et al., 2012). Elitism is controlled by the elitism rate, similar

to the mutation rate and generally helps the algorithm converge faster and removes some

stochasticity from the process. However, this can also mean that the algorithm is more likely

to prematurely convergence at a local minimum and provide a very sub-optimal solution. A

balance between mutation and elitism must be held in order to ensure that the search space

is being both explored and exploited.

Particle Swarm Optimization Algorithms

Particle swarm optimization (PSO) algorithm is a stochastic population-based metaheuristic

that utilises the behaviour of swarm intelligence. Swarm intelligence is the area that deals

with many individuals (called particles in this algorithm) and focuses on decentralised control

and self-organisation (Dorgio & Birattari, 2007). The PSO algorithm mimics the swarm

behaviour of bird flocks hunting for food in a cooperative way. It is based off of the idea of

emulating the successes of other particles in the population, and the movement of a particle

is influenced by the data of its neighbours and of the swarm (Engelbrecht, 2007). The

difference between a neighbourhood and the swarm will be touched on later in this section.

A PSO algorithm contains a swarm of particles, with swarm used as the term for the

population, and particle used as the term for the individual solutions. The particles move

around in the search space through the addition of a velocity vector to the current position.

The velocity vector is determined through the knowledge of the particle and its distance from

its best-known position (personal best), and also through the exchange of information from

the other particles in the swarm. The experiential knowledge of the individual particle is

 11

known as the cognitive component and the knowledge spread through the swarm (or

neighbourhood) is known as the social component. (Engelbrecht, 2007)

There are two types of PSO algorithms: Global Best PSO and Local Best PSO

In the global best PSO, (gbest), the neighbourhood for each particle is simply the whole

swarm. The velocity is calculated using the following equation,

𝑣𝑖𝑗(𝑡 + 1) = 𝑤𝑣𝑖𝑗(𝑡) + 𝑐1𝑟1𝑗(𝑡)[𝑦𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)] + 𝑐2𝑟2𝑗(𝑡)[𝑦̂𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)]

(Engelbrecht, 2007)

Where:

Table 1: PSO Equation values and their meanings

𝑣𝑖𝑗(𝑡) is the velocity of the particle 𝑖 in dimension 𝑗 at time step 𝑡. 𝑣𝑖𝑗(𝑡 + 1) is simply

the velocity at the next time step (iteration)

𝑥𝑖𝑗(𝑡) is the location of the particle 𝑖 in dimension 𝑗 at time step 𝑡

𝑤 is the inertia weight that controls momentum. It weighs the contribution of the

previous velocity and dictates how it will affect the new velocity

𝑐1 and 𝑐2 are acceleration constants that are used to scale the contribution of both the

cognitive (𝑐1) and social components (𝑐2), both are between 0 and 1

𝑟1𝑗(𝑡)

and

𝑟2𝑗(𝑡)

are random values between 0 and 1. This is what gives the algorithm a stochastic

element.

𝑦𝑖𝑗(𝑡) is the personal best of particle 𝑖 since the first time step 𝑡

𝑦̂𝑗(𝑡) is the global best position discovered by any particle at the time step 𝑡

(Engelbrecht, 2007)

Figure 4: Graphical representation of the velocity for a single particle in a two-dimensional

search space for two different time steps (Engelbrecht, 2007)

 12

The 𝑐1 and 𝑐2 components control the stochastic influence of the cognitive and social

components on the overall velocity of the particle. 𝑐1 is the cognitive component and refers

to how attracted a given particle is to the particle’s personal best, 𝑐2 refers to how attracted

the particles are to the global best found by the swarm. Particles are most effective when

𝑐1 and 𝑐2 have a good balance and are similar. A 𝑐1 value much greater than 𝑐2 results in

excessive wandering, 𝑐1 much less than 𝑐2 can result in premature convergence. (Pyswarms,

2019)

The local best PSO, (lbest) is a method where smaller neighbourhoods are created in a ring-

like structure in the search space. The social component of the algorithm is within the

neighbourhood, instead of within the entire swarm. The vector equation remains largely the

same as in gbest except 𝑦̂𝑗(𝑡) is instead 𝑦̂𝑖𝑗(𝑡) and is the best position of the neighbourhood

of particle 𝑖 in 𝑗 dimension instead of the best position of the entire swarm.

The locations of the initial particles can be either randomly generated or initialised evenly

across the search space. The initial velocity is set to zero, therefore the velocity of the first

iteration of particles will be largely based on the global best of the initial swarm. The initial

personal best is assigned to each particle’s initial position. The fitness function in PSOAs

functions exactly the same as in genetic algorithms.

 13

When to terminate the algorithm can be an important part of the process and choosing the

right termination condition for the situation is necessary. The three main stopping conditions

are: terminating the program when a pre-set number of iterations has been reached,

terminating when a solution is within a certain threshold of the optimum solution, or

terminating when there is no improvement within a certain number of iterations, and these

are generally applicable to all metaheuristics. (Engelbrecht, 2007)

Hypothesis & Applied Theory

The theory for both metaheuristics has been explained in detail, now it is important to

undergo an experiment to test which of the two algorithms is faster and more accurate in

solving various optimization algorithms. A qualitative experiment will be carried out where

both algorithms will be tested for speed and accuracy against a variety of different

optimization problems that belong to different categories and have different characteristics.

I hypothesize that the genetic algorithm will provide a higher accuracy than the particle

swarm optimization algorithm, especially in problems with multiple local maxima. This is

because genetic algorithm has more of a stochastic element via the mutation rate and has

more capability to escape these local minima. I however hypothesise that the PSO algorithm

will be faster than the genetic algorithm, this is because trajectory based method used allows

for a quicker exploration of the search space. Whereas the genetic algorithm relies on the fact

that the new solutions created by crossover and mutation will be better than the previous,

and this process is significantly slower than using trajectories and vectors.

METHOD

Independent variables

This experiment will be a qualitative investigation rather than a quantitative one. The

independent variable refers to what will be changed in the experiment, and I will be changing

the characteristics and categories of optimization problems that will be tested on both the

 14

particle swarm optimization algorithm and the genetic algorithm. A test set will be created

which includes a collection of optimization problems to be tested. Due to the nature of

particle swarm optimization algorithms being trajectory based and only working in a

continuous search space, only continuous optimization problems will be included in the test

set. In this test set there will be different categories of optimization problems with different

characteristics such as those that have many local minima or few local minima, many

dimension or 2 dimensions, those that are valley-shaped or have a sharp drop. Only non-linear

optimization problems are being used as the simplicity of these linear problems does not lend

well to a fair test and often results in luck winning based on previous experimentation. All

problems in the test set will have known solutions, this allows for a test for accuracy, as if

there is no known solution to a problem, there would be no criterion for testing accuracy.

Table 2: Test-set of continuous optimization problems. Sourced from (Surjanovic & Bingham,

2013)

Name Formula Global

Minimum

Search

Domain

Characteristics of function

Rastrigin

Function

𝑑 = dimensions

𝑓(0, … ,0)

= 0

xi ∈ [-5.12,

5.12]

for all I = 1,

…, d

• Many Local Minima

• Dimensions tested: 4 (works

with any amount of

dimensions

• Non-linear

Shown in a 2 dimensional form:

 15

Easom

Function

𝑓(𝜋, 𝜋)

= −1

xi ∈ [-100,

100], for all

i = 1, 2.

• Many Local Minima

• The global minimum curve

has small area relative to the

search space

• Dimensions tested: 2

(function only works with 2

dimensions)

• Non-linear

• Flat plain shape with steep

drop

Shown in a 2 dimensional form:

Three-

Hump

Camel

Function

𝑓(0, 0) = 0 xi ∈ [-5, 5],

for all i = 1,

2.

• Valley shape

• Three local minima

• Dimensions tested: 2

(function only works with 2

dimensions)

• Non-linear

 16

Ackley

Function

𝑑 = dimensions

𝑎 = 20

𝑏 = 0.2

𝑐 = 2 𝜋

𝑓(0, … ,0)

= 0

xi ∈ [-

32.768,

32.768], for

all i = 1,…,d.

• Many local optima

• Non-linear

• Dimensions tested: 6 (works

with any amount of

dimensions)

• Flat plain shape with steep

drop

Dependent variables

As we are testing for both speed and accuracy of both algorithms as stated in the research

question, there will be 2 tests performed on each optimization problem and therefore 2

dependent variables. The first test will be measuring the efficiency of the algorithm using a

fixed-target method which is the required iterations (in genetic algorithms this refers to each

generation and in PSO algorithms this refers to each movement of all particles) to find a

solution at a pre-set accuracy target, which will be 0.5 above the global minimum cost value

for my experiment. For example, if the optimization problem has a global minimum with a

cost value of -1, and the pre-set accuracy target set to 0.5, the number of iterations will be

recorded when the cost value reaches -1 + 0.5 (-0.5) or closer (Beiranvand, et al., 2017). The

number 0.5 was chosen as it requires the algorithm to come somewhat close to the minimum

but will not require large amounts of iterations, as we are measuring how fast the algorithm

can reach this target, not how accurate this target is. However, for the three-camel hump a

target of 0.5 was far too easy for the algorithm so the target was changed to 0.00005. This

change doesn’t affect the experiment as the comparison is between the two algorithms, and

since this target was the same for both algorithms it makes no difference to the investigation.

The second test will measure the accuracy of the algorithm using a fixed-cost method. The

 17

fixed-cost method involves calculating the fixed optimization error by finding the difference

between the final best fitness value and the known solution after running the algorithm for a

fixed period of iterations. For example, if after 100 iterations of an algorithm minimizing a

given fitness function, the final best current fitness is 1.46 and the known best fitness value

is 1, then the final optimization error is 1.46 − 1 = 0.46. The fixed period of iterations

selected is 100 iterations, this usually gives enough time for the algorithm to come near the

global minimum, but also is a key period where we can observe the algorithms if it gets stuck

at a local minimum. It also allows for a quick measurement of results, especially on computers

with poor specifications. For each of the two tests performed on each optimization problem,

there will be 5 trials, meaning that for each optimization problem, 10 total tests will be

performed.

Controlled variables

Table 3: Table of controlled variables

Variable Description Specifications

Computer and

Operating

System

The algorithms will be run on a

13-inch Early 2015 MacBook Air

on macOS Catalina 10.15.3

Processor: 1.6 GHz Dual-Core Intel

Core i5

Memory: 8GB 1600 MHz DDR3

All other applications will be closed

to free up RAM.

Integrated

Development

Environment

(IDE)

The IntelliJ IDEA IDE 2020.3

(Community Edition) will be used

to run both algorithms

Size of

population

As both particle swarm and

genetic algorithms are population

based metaheuristics, the

population parameter will be set

to 100 for both algorithms. This

 18

number was chosen as it allows

the algorithms to use their

information sharing abilities

however is not too

computationally taxing.

Specific

parameters

for both

algorithms

Due to the fact that the two

algorithms navigate the search

space very differently, there are

parameters specific to either

algorithm. In genetic algorithms

there is the elitism rate, crossover

method, and mutation rate. In

PSO algorithms there is the

𝑐1 and 𝑐2 components and

inertia, 𝑤. Finding the optimal

parameter configuration for each

problem is out of the scope of

this investigation, instead default

parameters will be used across all

problems for both algorithms.

These default values are

determined by the python

libraries for the respective

algorithms as there is no agreed-

upon expert recommended

default values for either

algorithm.

Genetic Algorithms:

Elitism Rate: 0.01 (1%)

Crossover Rate: 0.5 (50%)

Mutation Rate: 0.1 (10%)

Parents Portion*: 0.3 (30%)

PSO Algorithm:

𝑐1= 0.5

𝑐2= 0.3

𝑤 = 0.9

*Parents portion refers to the

portion of the population filled by

members of the previous

generation. Slightly different to

elitism as elitism skips the selection

step.

Search space

for each

optimization

problem

Both algorithms will always have

the same search space for the

same problem, but the search

 19

space will change depending on

the optimization problems itself.

Procedure

1. Set up the two algorithms from the code as seen in Appendix A (page 28) in an IntelliJ

project folder. The genetic algorithm code is sourced from (Solgi, 2020). The PSO

algorithm code is sourced from (PySwarms, 2017).

2. Choose the next optimization problem from the test set and configure it into both

programs. See Appendix B (page 30) for examples.

3. Configure the algorithm for the fixed-target method. Set the number of iterations to

1 000 and once the algorithm is done running, the code as seen at the bottom of

Appendix A1 and A2 will output how many iterations it took for the fitness function to

reach a value of 0.5 or less. Record this number of iterations. Repeat this process for

all 5 trials.

4. Configure the algorithm for the fixed-cost method. Set the number of iterations to 100

and record the global best fitness value outputted after termination. Repeat this

process for all 5 trials

5. Repeat steps 2-4, changing the optimization problem from the test set.

6. Take averages of the trials

DATA PROCESSING

Below shows the averages for all the problems tested, for raw results refer to Appendix C

(page 31)

Table 4: Averaged data for the results for the Rastrigin Function

Rastrigin Function Average number of

iterations to reach

Average optimization

error (Difference between

final global fitness value

 20

accuracy target - Fixed-

target method

best and known solution

fitness value) – Fixed-cost

method

Genetic Algorithm 73.4 0.818779715

Particle Swarm Optimization

Algorithm

143 1.037905522

Table 5: Averaged data for the results for the Easom Function

Easom Function Average number of

iterations to reach

accuracy target - Fixed-

target method

Average optimization

error (Difference between

final global fitness value

best and known solution

fitness value) – Fixed-cost

method

Genetic Algorithm 92 0.1380782328889

Particle Swarm Optimization

Algorithm

9.4 0.0000019911266

Table 6: Averaged data for the results for the Three-hump Camel Function

Three-hump Camel Function Average number of

iterations to reach

accuracy target - Fixed-

target method

Average optimization

error (Difference between

final global fitness value

best and known solution

fitness value) – Fixed-cost

method

Genetic Algorithm 148.8 0.00110863667

 21

Particle Swarm Optimization

Algorithm

22.2 0.00000007786

Table 7: Averaged data for the results for the Ackley Function

Ackley Function Average number of

iterations to reach

accuracy target - Fixed-

target method

Average optimization

error (Difference between

final global fitness value

best and known solution

fitness value) – Fixed-cost

method

Genetic Algorithm 588.8 16.515100764

Particle Swarm Optimization

Algorithm

54.8 0.016053783

ANALYSIS

My first hypothesis that the genetic algorithm will provide a higher accuracy score than the

swarm optimization algorithm, was shown not to be true for 3 out of the 4 optimization

problems. Through analysing the data seen in the Ackley and Easom functions, it is likely that

the genetic algorithm struggles with functions that feature a relatively flat plain with only a

small area for the global minimum curve. This can be observed in Figures 5 and 6.

Figure 5: Graph comparing the iterations against the value of the objective function of the

Ackley function for trial 4 of the fixed-cost method for the genetic algorithm

 22

Figure 6: Graph comparing the iterations against the value of the objective function of the

Easom function for trial 1 of the fixed-cost method for the genetic algorithm

 23

In figure 5, we can observe that the genetic algorithm plateaus around a fitness value of 20 in

the Ackley problem, where the global fitness value is 0. This potentially suggests that the

genetic algorithm struggles greatly with escaping the local minima in the flat plain of the

search space. This issue may partly be due to the high amount of dimensions, however the

genetic algorithm surprisingly showed strong results in the Rastrigin function, which features

4 dimensions. A similar scenario is seen in figure 6, with the genetic algorithm getting stuck

at multiple local minima of the Easom problem at fitness values of around 0, -0.4, and -0.6,

with the global minima fitness value at -1. As the problem has only 2 dimensions, there is less

difficulty than in the Ackley problem, however the problem of being unable to escape these

local minima arises again. This suggests that the first part of the hypothesis is wrong and that

the PSO algorithm yields better accuracy results than genetic algorithms, especially in

problems with high amounts of local minima such as the Ackley and Easom problem. The

Rastrigin function provided interesting results for the genetic algorithm with it outperforming

the PSO algorithm in both accuracy and speed. This may be due to the small search space of

the Rastrigin function (xi ∈ [-5.12, 5.12]) compared to the search space of the Easom problem

(xi ∈ [-100, 100]). The small search space makes it more likely for the stochastic approach of

the genetic algorithm to be successful, whereas in a large search space the approach will yield

little results with the random jumps across the search space leading to another local minima

instead of the global minima curve.

The second part of my hypothesis that the PSO algorithm will be faster than the genetic

algorithm can be observed to be correct in 3 out of the 4 problem sets. With the PSO being

on average 9.78 times faster than the genetic algorithm in reaching the accuracy target on

the Easom function. This is likely due to the fact that within an iteration, the entire population

moves drastically whereas the genetic algorithm makes small progress over time, relying

mostly on the effectiveness of crossover and random mutations to produce better solutions.

Due to the trajectory based method of the PSO algorithm, when a particle is moving towards

the gbest which may be stuck at a local minimum, the particle may stumble across the global

minimum. This is not the case with genetic algorithms as it often ends up discarding unfit

solutions and not selecting them for crossover. It is however important to note that the PSO

 24

algorithm is not immune to getting stuck at local minima and was observed in the Rastrigin

function as seen in figure 7.

Figure 7: Graph comparing the iterations against the value of the objective function of the

Rastrigin function for trial 1 of the fixed-cost method for the particle swarm optimization

algorithm

The algorithm plateaus at the end with a final fitness value of only 1.99, with the global

optimum fitness value of 0. The Rastrigin function features an increasing amount of local

minima as the algorithm approaches the global minimum. The algorithm gets stuck at one of

these local minima in 3 out of the 5 trials and it highlights that the PSO algorithm is not

perfect either and may need more of a stochastic element such as mutation that could bring

the particles closer to the global minimum.

CONCLUSION

This experiment aimed to use theory explained in this essay to design an experiment and

practically apply optimization problems onto both the genetic algorithm and the PSO

algorithm. The experiment tested for the accuracy and efficiency of the two algorithms

 25

against 4 different continuous optimization problems. The results demonstrated that the

particle swarm optimization algorithm almost always performed better on both speed and

accuracy. To take it further, the exploration that delved into the theory that caused the

patterns behind the results of the experiment and how and why the trajectory based method

of the PSO algorithm, while not perfect, outperformed against the mechanisms of selection,

mutation, and crossover of genetic algorithms. A limitation of this exploration was the

impracticability to fine tune each parameter of the algorithms to perfectly suit each

optimization problem in order to gain the most out of the capabilities of each algorithm. This

could be an area for further exploration of this investigation.

To answer my initial research question, the particle swarm optimization algorithm vastly

outperforms the genetic algorithm in solving optimization problems in terms of both speed

and accuracy.

BIBLIOGRAPHY

Özkaraca, O., 2018. A review on usage of optimization methods in geothermal power
generation. [Online]
Available at: https://link.springer.com/chapter/10.1007/978-3-030-48453-8_2
[Accessed 2022].
Abdoun, O., Abouchabaka, J. & Tajani, C., Not dated. Analyzing the Performance of Mutation
Operators to Solve the Travelling Salesman Problem. [Online]
Available at: https://arxiv.org/pdf/1203.3099.pdf
[Accessed 2022].
Beiranvand, V., Hare, W. L. & Lucet, Y., 2017. Best Practices for Comparing Optimization
Algorithms. [Online]
Available at:
https://www.researchgate.net/publication/317724973_Best_Practices_for_Comparing_Opt
imization_Algorithms
[Accessed 2022].
Blickle, T. & Thiele, L., 1995. A Comparison of Selection Schemes used in Genetic Algorithms.
[Online]
Available at: https://tik-old.ee.ethz.ch/file/6c0e384dceb283cd4301339a895b72b8/TIK-
Report11.pdf
[Accessed 2022].

 26

Brownlee, J., 2021. Local Optimization Versus Global Optimization. [Online]
Available at: https://machinelearningmastery.com/local-optimization-versus-global-
optimization/#:~:text=Local%20optimization%20involves%20finding%20the,problems%20th
at%20contain%20local%20optima.
[Accessed 2022].
Car, J., 2014. An Introduciton to Genetic Algorithms. [Online]
Available at:
https://www.whitman.edu/documents/academics/mathematics/2014/carrjk.pdf
[Accessed 2022].
Chase, C., Chen, H., Neoh, A. & Wilder-Smith, M., Not dated. An Evaluation of the Traveling
Salesman Problem. [Online]
Available at:
https://scholarworks.calstate.edu/downloads/xg94hr81q#:~:text=The%20brute%20force%2
0algorithm%20has,complexity%20is%20O(n!)%20.
[Accessed 2022].
Chehouri, A., Younes, R., Perron, J. & Illinca, A., 2016. A Constraint-Handling Technique for
Genetic Algorithms using a Violation Factor. [Online]
Available at: https://arxiv.org/pdf/1610.00976.pdf
[Accessed 2022].
Dorgio, M. & Birattari, M., 2007. Swarm Intelligence. [Online]
Available at:
http://www.scholarpedia.org/article/Swarm_intelligence#Particle_Swarm_Optimization
[Accessed 2022].
Dutta, A., 2019. Crossover in Genetic Algorithm. [Online]
Available at: https://www.geeksforgeeks.org/crossover-in-genetic-
algorithm/#:~:text=Uniform%20Crossover%20%3A%20Each%20gene%20(bit,or%20as%20go
od%20a%20solution.
[Accessed 2022].
Dutta, A., 2021. Encoding Methods in Genetic Algoithm. [Online]
Available at: https://www.geeksforgeeks.org/encoding-methods-in-genetic-algorithm/
[Accessed 2022].
Engelbrecht, A. P., 2007. Computational Intelligence. [Online]
Available at: http://www.shahed.ac.ir/stabaii/Files/CompIntelligenceBook.pdf
[Accessed 2022].
FrancQ, P., 2011. Optimization Problems. [Online]
Available at: http://www.otlet-institute.org/wikics/Optimization_Problems.html
[Accessed 2022].
Gad, A., 2018. Introduciton to Optimization with Genetic Algorithm. [Online]
Available at: https://towardsdatascience.com/introduction-to-optimization-with-genetic-
algorithm-2f5001d9964b
[Accessed 2022].
Glover, F. & Sörensen, K., 2015. Metaheuristics. [Online]
Available at: http://www.scholarpedia.org/article/Metaheuristics
[Accessed 2022].
Great Learning Team, 2022. Why is Time Complexity Essential and What is Time
Complexity?. [Online]

 27

Available at: https://www.mygreatlearning.com/blog/why-is-time-complexity-essential/
[Accessed 2022].
Kaya, Y., 2011. A Novel Crossover Operator for Genetic Algorithms: Ring Crossover. [Online]
Available at: https://www.researchgate.net/figure/Single-point-crossover_fig1_220485962
[Accessed 2022].
Kumar, D. N., 2020. Evolutionary algorithms, swarm intelligence methods, and their
applications in water resources engineering: a state-of-the-art review. [Online]
Available at: https://www.researchgate.net/figure/Taxonomy-of-optimization-
methods_fig1_342112667
[Accessed 2022].
Lin, W., Lian, Z., Gu, X. & Jiao, B., 2014. A Local and Global Search Combined Particle Swarm
Optimization Algorithm and Its Convergence Analysis. [Online]
Available at: https://www.hindawi.com/journals/mpe/2014/905712/
[Accessed 2022].
Lohn, J., Hornby, G. & Linden, D., 2005. An Evolved Antenna for Deployment on Nasa’s Space
Technology 5 Mission. [Online]
Available at: https://link.springer.com/chapter/10.1007/0-387-23254-0_18
[Accessed 2022].
Luenberger, D. G. & Ye, Y., 2008. Linear and Nonlinear Programming. [Online]
Available at: https://web.stanford.edu/class/msande310/310trialtext.pdf
[Accessed 2022].
Manning, T., Sleator, R. D. & Walsh, P., 2012. Naturally selecting solutions. [Online]
Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813526/
[Accessed 2022].
Mechanical Engineering at IIT Madras, No date. Optimizatoin Methods. [Online]
Available at: https://mech.iitm.ac.in/nspch52.pdf
[Accessed 2022].
Mitchell, M., 1999. An Introduction to Genetic Algorithms. [Online]
Available at: https://www.boente.eti.br/fuzzy/ebook-fuzzy-mitchell.pdf
[Accessed 2022].
Newcastle University, 2022. Roulette wheel selection. [Online]
Available at: http://www.edc.ncl.ac.uk/highlight/rhjanuary2007g02.php
PySwarms, 2017. https://pyswarms.readthedocs.io/en/latest/. [Online]
Available at: https://pyswarms.readthedocs.io/en/latest/
[Accessed 2022].
Pyswarms, 2019. Pyswarms Documentation Release 1.0.2. [Online]
Available at: https://readthedocs.org/projects/pyswarms/downloads/pdf/development/
[Accessed 2022].
Solgi, R., 2020. geneticalgorithm 1.0.2. [Online]
Available at: https://pypi.org/project/geneticalgorithm/
[Accessed 2022].
Solmaz Kia, No date. Lecture 14 Penalty Function Method. [Online]
Available at: http://solmaz.eng.uci.edu/Teaching/MAE206/Lecture14.pdf
[Accessed 2022].
Surjanovic, S. & Bingham, D., 2013. Optimization Test Problems. [Online]
Available at: https://www.sfu.ca/~ssurjano/optimization.html
[Accessed 2022].

 28

Wikipedia, 2022. Constrained Optimization. [Online]
Available at:
https://en.wikipedia.org/wiki/Constrained_optimization#:~:text=In%20mathematical%20op
timization%2C%20constrained%20optimization,of%20constraints%20on%20those%20variab
les.
[Accessed 2022].
Wikipedia, 2022. Crossover (genetic algorithm). [Online]
Available at:
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)#Crossover_for_ordered_lists
[Accessed 2022].
Wikipedia, 2022. Fitness proportionate selection. [Online]
Available at: https://en.wikipedia.org/wiki/Fitness_proportionate_selection
[Accessed 2022].
Wikipedia, 2022. Metaheuristc (Single-solution vs. population-based. [Online]
Available at: https://en.wikipedia.org/wiki/Metaheuristic#Single-solution_vs._population-
based
[Accessed 2022].
Wikipedia, 2022. Travelling Salesman Problem (Exact Algorithms). [Online]
Available at: https://en.wikipedia.org/wiki/Travelling_salesman_problem#Exact_algorithms
[Accessed 2022].
Wikipedia, 2022. Travelling Salesman Problem (Heuristic and approximation algorithms).
[Online]
Available at:
https://en.wikipedia.org/wiki/Travelling_salesman_problem#Heuristic_and_approximation_
algorithms
[Accessed 2022].

APPENDICES

Appendix A: Programs used in the experiment

Appendix A1: Genetic Algorithm Code

import math

import numpy as np

from geneticalgorithm import geneticalgorithm as ga

def f(X):

FITNESS FUNCTION

 return

 29

algorithm_param = {'max_num_iteration': ???, \

 'population_size':100, \

 'mutation_probability':0.1, \

 'elit_ratio': 0.01, \

 'crossover_probability': 0.5, \

 'parents_portion': 0.3, \

 'crossover_type':'uniform', \

 'max_iteration_without_improv': None}

VARIABLE BOUNDARIES

varbound=np.array()

model=ga(function=f,dimension=?,variable_type='real', variable_boundaries=varbound,

algorithm_parameters=algorithm_param)

model.run()

FOR FIXED-TARGET METHOD

for x in range(0, len(model.report)):

 if model.report[x] <= 0.5:

 print(x)

 break

solution=model.output_dict

Appendix A2: Particle Swarm Optimization Algorithm Code

import matplotlib.pyplot as plt

import numpy as np

import pyswarms as ps

from pyswarms.utils.functions import single_obj as fx

from pyswarms.utils.plotters import (plot_cost_history)

max_bound = ??

min_bound = ??

bounds = (min_bound, max_bound)

Initialize swarm

options = {'c1': 0.5, 'c2': 0.3, 'w':0.9}

Call instance of PSO with bounds argument

 30

optimizer = ps.single.GlobalBestPSO(n_particles=100, dimensions=??, options=options, bounds=bounds)

Perform optimization

cost, pos = optimizer.optimize(fx.??, iters=??)

plot_cost_history(cost_history=optimizer.cost_history)

plt.show()

FOR FIXED-TARGET METHOD

for x in range(0, len(optimizer.cost_history)):

 if optimizer.cost_history[x] <= 0.5:

 print(x)

 break

Appendix B: Example Code

Appendix B1: Genetic Algorithm code for Ackley Function

import math
import numpy as np
from geneticalgorithm import geneticalgorithm as ga

def f(X): # FITNESS FUNCTION

 dim=len(X)

 t1=0
 t2=0
 for i in range (0,dim):
 t1+=X[i]**2
 t2+=math.cos(2*math.pi*X[i])

 OF=20+math.e-20*math.exp((t1/dim)*-0.2)-math.exp(t2/dim)

 return OF

algorithm_param = {'max_num_iteration': 100, \
 'population_size': 100, \
 'mutation_probability':0.1, \
 'elit_ratio': 0.01, \
 'crossover_probability': 0.5, \
 'parents_portion': 0.3, \
 'crossover_type':'uniform', \
 'max_iteration_without_improv': None}

varbound=np.array([[-32.768,32.768]]*2) # BOUNDARIES OF THE SEARCH SPACE FOR THE
FUNCTION
model=ga(function=f,dimension=2,variable_type='real', variable_boundaries=varbound,
algorithm_parameters=algorithm_param)
model.run()
FOR FIXED-TARGET METHOD
for x in range(0, len(model.report)):
 if model.report[x] <= 0.5:
 print(x)

 31

 break

solution=model.output_dict

Appendix B1: PSO Algorithm code for Ackley Function

import matplotlib.pyplot as plt
import numpy as np
import pyswarms as ps
from pyswarms.utils.functions import single_obj as fx
from pyswarms.utils.plotters import (plot_cost_history)

max_bound = 32.768 * np.ones(2)
min_bound = - max_bound
bounds = (min_bound, max_bound) # BOUNDARIES FOR THE SEARCH SPACE
Initialize swarm
options = {'c1': 0.5, 'c2': 0.3, 'w':0.9}

Call instance of PSO with bounds argument
optimizer = ps.single.GlobalBestPSO(n_particles=100, dimensions=2, options=options,
bounds=bounds)

Perform optimization
cost, pos = optimizer.optimize(fx.ackley, iters=100) # FITNESS FUNCTION ALREADY A
FEATURE OF PYSWARMS
plot_cost_history(cost_history=optimizer.cost_history)
plt.show()
for x in range(0, len(optimizer.cost_history)):
 if optimizer.cost_history[x] <= 0.5:
 print(x)
 break

Appendix C: Raw Data

Rastrigin Function Average number of iterations

to reach accuracy target -

Fixed-target method

Average optimization error (Difference between final

global fitness value best and known solution fitness value)

– Fixed-cost method

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

Genetic Algorithm 98

60

111

55

43

1.54982

0.56706 1.02741

0.44891 0.50069

Particle Swarm

Optimization Algorithm

191

76

49

322

77

1.99006

1.98994

0.21406

0.00040

0.99506

 32

Easom

Function

Average number of

iterations to reach

accuracy target - Fixed-

target method

Average optimization error (Difference between final global fitness value

best and known solution fitness value) – Fixed-cost method

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

Genetic

Algorithm

35

106

141

56

122

0.42074

0.06539

0.20113

0.00313

0.000000374

Particle

Swarm

Optimization

Algorithm

11 7 13 11 5 0.00000228 0.00000184 0.00000406 0.00000011 0.00000166

Three-Hump

Camel

Function

Average number of

iterations to reach

accuracy target - Fixed-

target method

Average optimization error (Difference between final global fitness value

best and known solution fitness value) – Fixed-cost method

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

Genetic

Algorithm

140

209

42

155

198

0.0000711

0.0005366

0.0037370

0.0003544

0.0008441

Particle

Swarm

Optimization

Algorithm

14

45

21

15

16

0.000000007

0.000000108

0.000000132

0.000000118

0.0000000237

Ackley

Function

Average number of

iterations to reach

accuracy target - Fixed-

target method

Average optimization error (Difference between final global fitness value

best and known solution fitness value) – Fixed-cost method

 33

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

Genetic

Algorithm

356

599

700

641

648

20.0098

2.5428

20.0115

20.0053

20.0062

Particle

Swarm

Optimization

Algorithm

53

44

57

60

60

0.019934

0.018503

0.020196

0.011347

0.010289

	INTRODUCTION
	THEORY
	Optimization Problems
	Optimization Algorithms
	Genetic Algorithms
	Particle Swarm Optimization Algorithms
	Hypothesis & Applied Theory

	METHOD
	Independent variables
	Dependent variables
	Controlled variables
	Procedure

	DATA PROCESSING
	CONCLUSION
	BIBLIOGRAPHY
	APPENDICES
	Appendix A: Programs used in the experiment
	Appendix B: Example Code
	Appendix C: Raw Data

