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INTRODUCTION 

 

This primary focus of this essay is to investigate different metaheuristic strategies for 

optimization, specifically genetic algorithms, and particle swarm optimization (PSO) 

algorithms. In computer science and mathematics, an optimization problem is a problem that 

involves finding the best solution out of all possible solutions  (FrancQ, 2011). One method of 

solving an optimization problem involves a brute-force search (or exhaustive search) which 

involves listing all the possible solutions of a problem and searching for the “correct” or most 

optimal solution. However, for problems with a high time complexity, the brute-force 

approach becomes infeasible. Time complexity is the term used to refer to the amount of 

time taken by an algorithm to run given the amount of input values (Great Learning Team, 

2022). Some optimization problems such as the famous travelling salesman problem (TSP), a 

problem in which one must minimise the total route distance between N number of cities, 

have a time complexity class of factorial time, meaning that for N number of cities, the total 

number of operations (possible routes) is N factorial (Chase, et al., Not dated). The problem 

takes too long and requires large amounts of computing resources to run, hence why some 

optimization problems are better solved using heuristics and metaheuristics. Heuristics are 

techniques that are adapted to the specific problem and are quicker than a brute-force 

search, such as the nearest neighbour method for the TSP where the salesman chooses the 

nearest unvisited city as the next move. A metaheuristic is a higher-level problem-

independent method that can be applied to most optimization problems (Glover & Sörensen, 

2015). Examples of metaheuristics are genetic algorithms and particle swarm optimization 

algorithms, among many others. What struck me as interesting about so many of these 

metaheuristics is the heavy inspiration from biology and how the field of computer science 

attempts to mimic nature. Genetic algorithms use biological processes such as natural 

selection, evolution, mutation, and gene crossover whereas particle swarm algorithms mimic 

swarm-like intelligence, such as birds hunting for food. These algorithms are used in various 

industries and are incredibly useful in optimizing a variety of things such as NASA using 

evolutionary algorithms to design a more efficient antenna (Lohn, et al., 2005). Hence 

comparing two algorithms to see which is superior and more suitable for use in the real world 

can lead to many discoveries in the field of science and is worthy of investigation. There are 
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two large branches of metaheuristics, one that mimics evolutionary mechanisms and one that 

mimics swarm-like behaviours. Choosing one algorithm from each category and comparing 

them would not only show which algorithm is better but could also suggest that a certain 

method (evolutionary or swarm intelligence) is better than the other. Two major factors of  

good metaheuristics are speed and accuracy, as the algorithm needs to be fast enough to be 

worth using but must also be accurate enough to provide an appropriate answer to the 

problem. All these factors gave light to the research question: “How does the genetic 

algorithm compare to that of the particle swarm optimization algorithm in solving 

optimization problems in terms of efficiency and accuracy?”. The criteria for efficiency and 

accuracy will be discussed further in the method section of the essay. 

 

THEORY 

 

Optimization Problems 

 

An optimization problem is a problem that consists of finding the best solution out of all 

feasible solutions, a finite set of variables. Optimization problems can be split into two 

categories: combinatorial and continuous. Combinatorial optimization problems consist of 

solutions of only certain values with distinct spaces between values (e.g., whole numbers) 

whereas continuous optimization problems consist of a constant sequence of solutions and 

can take any value within a range. For each instance within a combinatorial optimization 

problem, the instance is defined by a pair (F, c) with F representing the search space and c 

representing the ‘cost’ or ‘fitness’ for each solution of F (for example with the travelling 

salesman problem the ‘cost’ would be the distance of the specific route, F). (FrancQ, 2011) 

The cost function or fitness function is also more commonly referred to as the objective. To 

optimise the problem, one typically is aiming to find the maximum or minimum of objective 

function, for example, in the TSP the aim is to find the shortest distance between the cities 

thus the objective is to find the lowest possible value of the objective function otherwise 

known as the minimum of the function.  
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Another distinction within optimization problems is unconstrained optimization and 

constrained optimization. The distinction arises between whether there are constraints on 

the variables or not, for example the constraints could simply be bounds on the variables such 

as f(x) ≥ 0. These constraints can either be soft constraints, which simply have variables that 

are penalised in the objective function, or hard constraints, which are conditions that must 

be met (Wikipedia, 2022). A large range of characteristics and qualities of optimization 

problems will be looked at further when developing the test set for the experiment later in 

this essay. 

 

Optimization Algorithms 

 

Optimization algorithms are iterative procedures that involve comparing various solutions 

until an exact or possible optimal solution to an optimization problem is found. (Mechanical 

Engineering at IIT Madras, No date).  

 

Figure 1 categorises different optimization algorithms in different steps and arises new and 

relevant categorisations and methods of optimization algorithms such as exact, approximate, 

linear and non-linear programming, global search, local search, population-based, and 

single-solution based. Not all the terms mentioned in the graph are relevant to this essay, so 

only certain terms will be discussed however many of the terms relating to optimization 

problems are relevant as it is important to include a range of problems in the test set when 

evaluating the efficiency and accuracy of an optimization algorithms. Initially the 

categorisation is based on the optimization problem that the algorithm is being used to solve, 

whether it is a continuous or combinatorial (discrete) problem. If the problem is continuous, 

the next distinction is whether the problem is linear or non-linear. Linear programming is a 

process of solving an optimization problem where the constraints and objective function are 

both linear relationships (Luenberger & Ye, 2008) Whereas non-linear programming involves 

a problem where either objective and/or constraints consist of a non-linear relationship. 

Global search methods for continuous problems, along with approximate solutions to 

combinatorial problems lead to the choice of a heuristic, a meta-heuristic, or a random search 

to provide a solution. Out of the three options of heuristic, meta-heuristic and random search, 

meta-heuristic branches off into another classification dimension of single-solution or 
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population-based search. The, the single-solution based search focuses on improving a single 

candidate solution. The population-based method improves on multiple candidate solutions 

and is the focus of this essay. Genetic algorithms are found under the evolutionary algorithm 

category of population-based searches and particle swarm optimization algorithms are 

classified under swarm intelligence.  

 

 

Figure 1: Classifying optimization algorithms based on aspects from the optimization  

problem being solved and the optimization method (Kumar, 2020) 
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Genetic Algorithms 

Genetic Algorithms were created by John Holland in the 1960’s, the goal of this was to study 

the concept of adaption in nature and develop ways of importing biological processes such as 

natural adaption into computer systems. (Mitchell, 1999) 

 

As briefly touched on, a genetic algorithm is a metaheuristic, stochastic, global search 

optimization that falls under the category of Evolutionary Algorithms. Evolutionary algorithms 

are inspired by the mechanisms of biological evolution and have three main characteristics: 

population-based, fitness-oriented (fitness value given to each individual solution), and 

variation-driven (random changes in the solution from iteration to iteration). (Gad, 2018) 

 

The processes of genetic algorithms can be distinguished into five phases: 

1. Creating the initial population 

2. Calculating the fitness of each solution 

3. Selection 

4. Gene crossover 

5. Gene mutation 

 

Creating the Initial Population 

Creating the initial population for the genetic algorithm requires encoding the solutions into 

“chromosomes”. Each individual candidate needs to be encoded into strings of numerical 

values, commonly the solutions are encoded into binary (0s and 1s) and the solution is 

comprised of an array of parameter values called “genes” and these strings of genes are what 

forms the chromosomes. (Dutta, 2021) The chromosome can also be referred as the genotype 

which is defined as the set of instructions to be decoded to form the phenotype which is used 

as an evaluable solution. (Manning, et al., 2012). Figure 2 shows a possible genotype and 

phenotype the travelling salesman problem, each city in the array of parameters is a gene and 

the arrangement of genes forms the chromosome or genotype, this can be mapped to create 

a phenotype and presented in a form that is easily evaluable. If the optimization problem is 

continuous, the ‘chromosomes’ for each solution is generated by the position in the search. 
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E.g., if the problem were to have 2 dimensions, x and y, then the ‘chromosome’ for a solution 

could look like x, y = [49.35, 89.57]. 

 

The initial population is comprised of a set of chromosomes of randomly assigned values 

within the specified search space, this forms the first generation of solutions. 

 

Figure 2: A possible genotype and phenotype representation for the TSP. (Manning, et al., 

2012) 

 

 

Calculating the fitness of each solution 

Each candidate solution is evaluated by the fitness function, the function that the algorithm 

is attempting to optimise, and gives a measure to how close a given solution is to achieving 

the optimum. At each iteration or generation, each solution in that iteration is assigned a 

fitness or cost value. In optimization problems where there are constraints (such as an 

inequality equation of x≥0), sometimes a penalty method is used when a solution. This 

involves multiplying the cost value by a penalty parameter that is calculated by measuring the 

extent of the breach of the constraint (a more severe violation results in a more severe 

penalty), this is called a soft constraint. (Solmaz Kia, No date) 

 

 

Selection 

After each generation has been assigned a fitness value by the objective function, the next 

process is to select the “parents” whose genes will be used to create the next generation of 
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solutions (the offspring). Typically, the selection algorithms favour the individuals with the 

most optimal fitness and are selected to produce the offspring. (Manning, et al., 2012).  

 

Gene crossover 

In the crossover stage of the genetic algorithm, the genes of two parents (selected using the 

specific selection algorithm) from the current generation are crossed over to create a set of 

offspring. An example of a type of gene crossover is one-point crossover (see Figure 3), where 

a crossover point on the string of parents is selected, and all genes after this point are 

swapped and this creates 2 offspring. (Dutta, 2019). However, in some optimization problems, 

not all assortments of chromosomes represent a valid solution (such as in the TSP, which 

needs one of each city in the solution, and not two of the same city) so many specialised 

crossover methods have been developed for similar problems. One of the parameters of the 

genetic algorithm is the crossover rate, which is the probability that two chromosomes cross 

genes in order to make the new population, or whether the population is entirely made up of 

certain chromosomes from the previous generation (0% crossover rate) (Chehouri, et al., 

2016). 

 

Figure 3: Diagram showing one point crossover (Kaya, 2011) 

 

 

 

 

Mutation 

After a new generated has been created through selection and crossover, mutation occurs. 

Mutation refers to the random modification of a chromosome and the probability of this 

occurring is controlled by the mutation rate (Manning, et al., 2012). Mutation is closely 
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related to the exploration of the search space and allows the solutions to randomly ‘jump’ 

across it. It also can prevent the algorithm from getting trapped in local minima as mutation 

can cause a solution to ‘jump’ out of it and potentially find a fitter location. Its main role is to 

maintain genetic diversity in the population. (Abdoun, et al., Not dated) 

 

Additional Parameter: Elitism 

Elitism allows the best performing solution(s) in a generation to proceed into the proceeding 

generation unmodified (Manning, et al., 2012). Elitism is controlled by the elitism rate, similar 

to the mutation rate and generally helps the algorithm converge faster and removes some 

stochasticity from the process. However, this can also mean that the algorithm is more likely 

to prematurely convergence at a local minimum and provide a very sub-optimal solution. A 

balance between mutation and elitism must be held in order to ensure that the search space 

is being both explored and exploited.  

 

Particle Swarm Optimization Algorithms 

Particle swarm optimization (PSO) algorithm is a stochastic population-based metaheuristic 

that utilises the behaviour of swarm intelligence. Swarm intelligence is the area that deals 

with many individuals (called particles in this algorithm) and focuses on decentralised control 

and self-organisation (Dorgio & Birattari, 2007). The PSO algorithm mimics the swarm 

behaviour of bird flocks hunting for food in a cooperative way. It is based off of the idea of 

emulating the successes of other particles in the population, and the movement of a particle 

is influenced by the data of its neighbours and of the swarm (Engelbrecht, 2007). The 

difference between a neighbourhood and the swarm will be touched on later in this section.  

 

A PSO algorithm contains a swarm of particles, with swarm used as the term for the 

population, and particle used as the term for the individual solutions. The particles move 

around in the search space through the addition of a velocity vector to the current position. 

The velocity vector is determined through the knowledge of the particle and its distance from 

its best-known position (personal best), and also through the exchange of information from 

the other particles in the swarm. The experiential knowledge of the individual particle is 



 

 11 

known as the cognitive component and the knowledge spread through the swarm (or 

neighbourhood) is known as the social component. (Engelbrecht, 2007) 

 

There are two types of PSO algorithms: Global Best PSO and Local Best PSO 

 

In the global best PSO, (gbest), the neighbourhood for each particle is simply the whole 

swarm. The velocity is calculated using the following equation, 

 

𝑣𝑖𝑗(𝑡 + 1) = 𝑤𝑣𝑖𝑗(𝑡) +  𝑐1𝑟1𝑗(𝑡)[𝑦𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)] + 𝑐2𝑟2𝑗(𝑡)[𝑦̂𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)]  

(Engelbrecht, 2007) 

 

Where: 

Table 1: PSO Equation values and their meanings 

 

𝑣𝑖𝑗(𝑡) is the velocity of the particle 𝑖 in dimension 𝑗 at time step 𝑡. 𝑣𝑖𝑗(𝑡 + 1) is simply 

the velocity at the next time step (iteration) 

𝑥𝑖𝑗(𝑡) is the location of the particle 𝑖 in dimension 𝑗 at time step 𝑡 

𝑤 is the inertia weight that controls momentum. It weighs the contribution of the 

previous velocity and dictates how it will affect the new velocity 

𝑐1 and 𝑐2 are acceleration constants that are used to scale the contribution of both the 

cognitive (𝑐1) and social components (𝑐2), both are between 0 and 1 

 

𝑟1𝑗(𝑡) 

and 

𝑟2𝑗(𝑡) 

are random values between 0 and 1. This is what gives the algorithm a stochastic 

element. 

𝑦𝑖𝑗(𝑡) is the personal best of particle 𝑖 since the first time step 𝑡 

𝑦̂𝑗(𝑡) is the global best position discovered by any particle at the time step 𝑡 

(Engelbrecht, 2007) 

 

Figure 4: Graphical representation of the velocity for a single particle in a two-dimensional 

search space for two different time steps (Engelbrecht, 2007) 
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The 𝑐1 and 𝑐2 components control the stochastic influence of the cognitive and social 

components on the overall velocity of the particle. 𝑐1 is the cognitive component and refers 

to how attracted a given particle is to the particle’s personal best, 𝑐2 refers to how attracted 

the particles are to the global best found by the swarm. Particles are most effective when 

𝑐1 and 𝑐2 have a good balance and are similar. A 𝑐1 value much greater than 𝑐2 results in 

excessive wandering, 𝑐1 much less than 𝑐2 can result in premature convergence. (Pyswarms, 

2019) 

 

The local best PSO, (lbest) is a method where smaller neighbourhoods are created in a ring-

like structure in the search space. The social component of the algorithm is within the 

neighbourhood, instead of within the entire swarm. The vector equation remains largely the 

same as in gbest except 𝑦̂𝑗(𝑡) is instead 𝑦̂𝑖𝑗(𝑡)  and is the best position of the neighbourhood 

of particle 𝑖 in 𝑗 dimension instead of the best position of the entire swarm. 

The locations of the initial particles can be either randomly generated or initialised evenly 

across the search space. The initial velocity is set to zero, therefore the velocity of the first 

iteration of particles will be largely based on the global best of the initial swarm. The initial 

personal best is assigned to each particle’s initial position. The fitness function in PSOAs 

functions exactly the same as in genetic algorithms. 
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When to terminate the algorithm can be an important part of the process and choosing the 

right termination condition for the situation is necessary. The three main stopping conditions 

are: terminating the program when a pre-set number of iterations has been reached, 

terminating when a solution is within a certain threshold of the optimum solution, or 

terminating when there is no improvement within a certain number of iterations, and these 

are generally applicable to all metaheuristics. (Engelbrecht, 2007) 

 

Hypothesis & Applied Theory 

 

The theory for both metaheuristics has been explained in detail, now it is important to 

undergo an experiment to test which of the two algorithms is faster and more accurate in 

solving various optimization algorithms. A qualitative experiment will be carried out where 

both algorithms will be tested for speed and accuracy against a variety of different 

optimization problems that belong to different categories and have different characteristics. 

 

I hypothesize that the genetic algorithm will provide a higher accuracy than the particle 

swarm optimization algorithm, especially in problems with multiple local maxima. This is 

because genetic algorithm has more of a stochastic element via the mutation rate and has 

more capability to escape these local minima. I however hypothesise that the PSO algorithm 

will be faster than the genetic algorithm, this is because trajectory based method used allows 

for a quicker exploration of the search space. Whereas the genetic algorithm relies on the fact 

that the new solutions created by crossover and mutation will be better than the previous, 

and this process is significantly slower than using trajectories and vectors. 

 

 

METHOD 

Independent variables 

 

This experiment will be a qualitative investigation rather than a quantitative one. The 

independent variable refers to what will be changed in the experiment, and I will be changing 

the characteristics and categories of optimization problems that will be tested on both the 
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particle swarm optimization algorithm and the genetic algorithm. A test set will be created 

which includes a collection of optimization problems to be tested. Due to the nature of 

particle swarm optimization algorithms being trajectory based and only working in a 

continuous search space, only continuous optimization problems will be included in the test 

set. In this test set there will be different categories of optimization problems with different 

characteristics such as those that have many local minima or few local minima, many 

dimension or 2 dimensions, those that are valley-shaped or have a sharp drop. Only non-linear 

optimization problems are being used as the simplicity of these linear problems does not lend 

well to a fair test and often results in luck winning based on previous experimentation. All 

problems in the test set will have known solutions, this allows for a test for accuracy, as if 

there is no known solution to a problem, there would be no criterion for testing accuracy. 

 

Table 2: Test-set of continuous optimization problems. Sourced from (Surjanovic & Bingham, 

2013) 

Name Formula Global 

Minimum 

Search 

Domain 

Characteristics of function 

Rastrigin 

Function  

𝑑 = dimensions 

𝑓(0, … ,0)

= 0 

xi ∈ [-5.12, 

5.12] 

for all I = 1, 

…, d 

 

• Many Local Minima 

• Dimensions tested: 4 (works 

with any amount of 

dimensions 

• Non-linear 

 

Shown in a 2 dimensional form: 
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Easom 

Function 
 
𝑓(𝜋, 𝜋)

= −1 

xi ∈ [-100, 

100], for all 

i = 1, 2. 

• Many Local Minima 

• The global minimum curve 

has small area relative to the 

search space 

• Dimensions tested: 2 

(function only works with 2 

dimensions) 

• Non-linear 

• Flat plain shape with steep 

drop 

 

Shown in a 2 dimensional form: 

 

 

Three-

Hump 

Camel 

Function 

 

𝑓(0, 0) = 0 xi ∈ [-5, 5], 

for all i = 1, 

2. 

• Valley shape 

• Three local minima 

• Dimensions tested: 2 

(function only works with 2 

dimensions) 

• Non-linear 

 

 

 



 

 16 

Ackley 

Function  

 

𝑑 = dimensions 

𝑎 = 20 

𝑏 = 0.2 

𝑐 = 2 𝜋 

𝑓(0, … ,0)

= 0 

xi ∈ [-

32.768, 

32.768], for 

all i = 1,…,d. 

• Many local optima 

• Non-linear 

• Dimensions tested: 6 (works 

with any amount of 

dimensions) 

• Flat plain shape with steep 

drop 

 

 

 

Dependent variables 

As we are testing for both speed and accuracy of both algorithms as stated in the research 

question, there will be 2 tests performed on each optimization problem and therefore 2 

dependent variables. The first test will be measuring the efficiency of the algorithm using a 

fixed-target method which is the required iterations (in genetic algorithms this refers to each 

generation and in PSO algorithms this refers to each movement of all particles) to find a 

solution at a pre-set accuracy target, which will be 0.5 above the global minimum cost value 

for my experiment. For example, if the optimization problem has a global minimum with a 

cost value of -1, and the pre-set accuracy target set to 0.5, the number of iterations will be 

recorded when the cost value reaches -1 + 0.5 (-0.5) or closer (Beiranvand, et al., 2017). The 

number 0.5 was chosen as it requires the algorithm to come somewhat close to the minimum 

but will not require large amounts of iterations, as we are measuring how fast the algorithm 

can reach this target, not how accurate this target is. However, for the three-camel hump a 

target of 0.5 was far too easy for the algorithm so the target was changed to 0.00005. This 

change doesn’t affect the experiment as the comparison is between the two algorithms, and 

since this target was the same for both algorithms it makes no difference to the investigation. 

The second test will measure the accuracy of the algorithm using a fixed-cost method. The 
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fixed-cost method involves calculating the fixed optimization error by finding the difference 

between the final best fitness value and the known solution after running the algorithm for a 

fixed period of iterations. For example, if after 100 iterations of an algorithm minimizing a 

given fitness function, the final best current fitness is 1.46 and the known best fitness value 

is 1, then the final optimization error is 1.46 − 1 = 0.46. The fixed period of iterations 

selected is 100 iterations, this usually gives enough time for the algorithm to come near the 

global minimum, but also is a key period where we can observe the algorithms if it gets stuck 

at a local minimum. It also allows for a quick measurement of results, especially on computers 

with poor specifications. For each of the two tests performed on each optimization problem, 

there will be 5 trials, meaning that for each optimization problem, 10 total tests will be 

performed. 

 

 

Controlled variables 

 

Table 3: Table of controlled variables 

Variable Description Specifications 

Computer and 

Operating 

System 

The algorithms will be run on a 

13-inch Early 2015 MacBook Air 

on macOS Catalina 10.15.3 

Processor: 1.6 GHz Dual-Core Intel 

Core i5 

Memory: 8GB 1600 MHz DDR3 

All other applications will be closed 

to free up RAM. 

Integrated 

Development 

Environment 

(IDE) 

The IntelliJ IDEA IDE 2020.3 

(Community Edition) will be used 

to run both algorithms 

 

Size of 

population 

As both particle swarm and 

genetic algorithms are population 

based metaheuristics, the 

population parameter will be set 

to 100 for both algorithms. This 
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number was chosen as it allows 

the algorithms to use their 

information sharing abilities 

however is not too 

computationally taxing. 

Specific 

parameters 

for both 

algorithms 

Due to the fact that the two 

algorithms navigate the search 

space very differently, there are 

parameters specific to either 

algorithm. In genetic algorithms 

there is the elitism rate, crossover 

method, and mutation rate. In 

PSO algorithms there is the 

𝑐1 and 𝑐2 components and 

inertia, 𝑤. Finding the optimal 

parameter configuration for each 

problem is out of the scope of 

this investigation, instead default 

parameters will be used across all 

problems for both algorithms. 

These default values are 

determined by the python 

libraries for the respective 

algorithms as there is no agreed-

upon expert recommended 

default values for either 

algorithm. 

Genetic Algorithms: 

Elitism Rate: 0.01 (1%) 

Crossover Rate: 0.5 (50%) 

Mutation Rate: 0.1 (10%) 

Parents Portion*: 0.3 (30%) 

 

PSO Algorithm: 

𝑐1= 0.5 

𝑐2= 0.3 

𝑤 = 0.9 

 

 

 

*Parents portion refers to the 

portion of the population filled by 

members of the previous 

generation. Slightly different to 

elitism as elitism skips the selection 

step. 

 

Search space 

for each 

optimization 

problem 

Both algorithms will always have 

the same search space for the 

same problem, but the search 
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space will change depending on 

the optimization problems itself. 

 

 

Procedure 

1. Set up the two algorithms from the code as seen in Appendix A (page 28) in an IntelliJ 

project folder. The genetic algorithm code is sourced from (Solgi, 2020). The PSO  

algorithm code is sourced from (PySwarms, 2017). 

2. Choose the next optimization problem from the test set and configure it into both 

programs. See Appendix B (page 30) for examples. 

3. Configure the algorithm for the fixed-target method. Set the number of iterations to 

1 000 and once the algorithm is done running, the code as seen at the bottom of 

Appendix A1 and A2 will output how many iterations it took for the fitness function to 

reach a value of 0.5 or less. Record this number of iterations. Repeat this process for 

all 5 trials.  

4. Configure the algorithm for the fixed-cost method. Set the number of iterations to 100 

and record the global best fitness value outputted after termination. Repeat this 

process for all 5 trials 

5. Repeat steps 2-4, changing the optimization problem from the test set. 

6. Take averages of the trials 

 

 

DATA PROCESSING 

Below shows the averages for all the problems tested, for raw results refer to Appendix C 

(page 31) 

 

Table 4: Averaged data for the results for the Rastrigin Function 

 

Rastrigin Function Average number of 

iterations to reach 

Average optimization 

error (Difference between 

final global fitness value 
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accuracy target - Fixed-

target method 

best and known solution 

fitness value) – Fixed-cost 

method 

Genetic Algorithm 73.4 0.818779715 

 

Particle Swarm Optimization 

Algorithm 

143 1.037905522 

 

 

Table 5: Averaged data for the results for the Easom Function 

 

Easom Function Average number of 

iterations to reach 

accuracy target - Fixed-

target method 

Average optimization 

error (Difference between 

final global fitness value 

best and known solution 

fitness value) – Fixed-cost 

method 

Genetic Algorithm 92 0.1380782328889 

 

Particle Swarm Optimization 

Algorithm 

9.4 0.0000019911266 

 

 

Table 6: Averaged data for the results for the Three-hump Camel Function 

 

Three-hump Camel Function Average number of 

iterations to reach 

accuracy target - Fixed-

target method 

Average optimization 

error (Difference between 

final global fitness value 

best and known solution 

fitness value) – Fixed-cost 

method 

Genetic Algorithm 148.8 0.00110863667 
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Particle Swarm Optimization 

Algorithm 

22.2 0.00000007786 

 

 

Table 7: Averaged data for the results for the Ackley Function 

 

Ackley Function Average number of 

iterations to reach 

accuracy target - Fixed-

target method 

Average optimization 

error (Difference between 

final global fitness value 

best and known solution 

fitness value) – Fixed-cost 

method 

Genetic Algorithm 588.8 16.515100764 

 

Particle Swarm Optimization 

Algorithm 

54.8 0.016053783 

 

 

ANALYSIS  

My first hypothesis that the genetic algorithm will provide a higher accuracy score than the 

swarm optimization algorithm, was shown not to be true for 3 out of the 4 optimization 

problems. Through analysing the data seen in the Ackley and Easom functions, it is likely that 

the genetic algorithm struggles with functions that feature a relatively flat plain with only a 

small area for the global minimum curve. This can be observed in Figures 5 and 6. 

 

Figure 5: Graph comparing the iterations against the value of the objective function of the 

Ackley function for trial 4 of the fixed-cost method for the genetic algorithm 
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Figure 6: Graph comparing the iterations against the value of the objective function of the 

Easom function for trial 1 of the fixed-cost method for the genetic algorithm 
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In figure 5, we can observe that the genetic algorithm plateaus around a fitness value of 20 in 

the Ackley problem, where the global fitness value is 0. This potentially suggests that the 

genetic algorithm struggles greatly with escaping the local minima in the flat plain of the 

search space. This issue may partly be due to the high amount of dimensions, however the 

genetic algorithm surprisingly showed strong results in the Rastrigin function, which features 

4 dimensions. A similar scenario is seen in figure 6, with the genetic algorithm getting stuck 

at multiple local minima of the Easom problem at fitness values of around 0, -0.4, and -0.6, 

with the global minima fitness value at -1. As the problem has only 2 dimensions, there is less 

difficulty than in the Ackley problem, however the problem of being unable to escape these 

local minima arises again. This suggests that the first part of the hypothesis is wrong and that 

the PSO algorithm yields better accuracy results than genetic algorithms, especially in 

problems with high amounts of local minima such as the Ackley and Easom problem. The 

Rastrigin function provided interesting results for the genetic algorithm with it outperforming 

the PSO algorithm in both accuracy and speed. This may be due to the small search space of 

the Rastrigin function (xi ∈ [-5.12, 5.12]) compared to the search space of the Easom problem 

(xi ∈ [-100, 100]). The small search space makes it more likely for the stochastic approach of 

the genetic algorithm to be successful, whereas in a large search space the approach will yield 

little results with the random jumps across the search space leading to another local minima 

instead of the global minima curve.  

 

The second part of my hypothesis that the PSO algorithm will be faster than the genetic 

algorithm can be observed to be correct in 3 out of the 4 problem sets. With the PSO being 

on average 9.78 times faster than the genetic algorithm in reaching the accuracy target on 

the Easom function. This is likely due to the fact that within an iteration, the entire population 

moves drastically whereas the genetic algorithm makes small progress over time, relying 

mostly on the effectiveness of crossover and random mutations to produce better solutions. 

Due to the trajectory based method of the PSO algorithm, when a particle is moving towards 

the gbest which may be stuck at a local minimum, the particle may stumble across the global 

minimum. This is not the case with genetic algorithms as it often ends up discarding unfit 

solutions and not selecting them for crossover. It is however important to note that the PSO 
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algorithm is not immune to getting stuck at local minima and was observed in the Rastrigin 

function as seen in figure 7. 

 

Figure 7: Graph comparing the iterations against the value of the objective function of the 

Rastrigin function for trial 1 of the fixed-cost method for the particle swarm optimization 

algorithm 

 

 

The algorithm plateaus at the end with a final fitness value of only 1.99, with the global 

optimum fitness value of 0. The Rastrigin function features an increasing amount of local 

minima as the algorithm approaches the global minimum. The algorithm gets stuck at one of 

these local minima in 3 out of the 5 trials and it highlights that the PSO algorithm is not 

perfect either and may need more of a stochastic element such as mutation that could bring 

the particles closer to the global minimum. 

 

 

CONCLUSION 

This experiment aimed to use theory explained in this essay to design an experiment and 

practically apply optimization problems onto both the genetic algorithm and the PSO 

algorithm. The experiment tested for the accuracy and efficiency of the two algorithms 
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against 4 different continuous optimization problems. The results demonstrated that the 

particle swarm optimization algorithm almost always performed better on both speed and 

accuracy. To take it further, the exploration that delved into the theory that caused the 

patterns behind the results of the experiment and how and why the trajectory based method 

of the PSO algorithm, while not perfect, outperformed against the mechanisms of selection, 

mutation, and crossover of genetic algorithms. A limitation of this exploration was the 

impracticability to fine tune each parameter of the algorithms to perfectly suit each 

optimization problem in order to gain the most out of the capabilities of each algorithm. This 

could be an area for further exploration of this investigation. 

 

To answer my initial research question, the particle swarm optimization algorithm vastly 

outperforms the genetic algorithm in solving optimization problems in terms of both speed 

and accuracy.  
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APPENDICES 

Appendix A: Programs used in the experiment 

 

Appendix A1: Genetic Algorithm Code 

 

import math 

import numpy as np 

from geneticalgorithm import geneticalgorithm as ga 

 

def f(X): 

 

# FITNESS FUNCTION 

 

    return  
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algorithm_param = {'max_num_iteration': ???, \ 

                   'population_size':100, \ 

                   'mutation_probability':0.1, \ 

                   'elit_ratio': 0.01, \ 

                   'crossover_probability': 0.5, \ 

                   'parents_portion': 0.3, \ 

                   'crossover_type':'uniform', \ 

                   'max_iteration_without_improv': None} 

 

# VARIABLE BOUNDARIES 

varbound=np.array() 

 

model=ga(function=f,dimension=?,variable_type='real', variable_boundaries=varbound, 

algorithm_parameters=algorithm_param) 

 

model.run() 

 

# FOR FIXED-TARGET METHOD 

for x in range(0, len(model.report)): 

    if model.report[x] <= 0.5: 

        print(x) 

        break 

 

solution=model.output_dict 

 

Appendix A2: Particle Swarm Optimization Algorithm Code 

 

import matplotlib.pyplot as plt 

import numpy as np 

import pyswarms as ps 

from pyswarms.utils.functions import single_obj as fx 

from pyswarms.utils.plotters import (plot_cost_history) 

 

max_bound = ?? 

min_bound = ?? 

bounds = (min_bound, max_bound) 

# Initialize swarm 

options = {'c1': 0.5, 'c2': 0.3, 'w':0.9} 

 

# Call instance of PSO with bounds argument 
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optimizer = ps.single.GlobalBestPSO(n_particles=100, dimensions=??, options=options, bounds=bounds) 

 

# Perform optimization 

cost, pos = optimizer.optimize(fx.??, iters=??) 

plot_cost_history(cost_history=optimizer.cost_history) 

plt.show() 

 

# FOR FIXED-TARGET METHOD 

for x in range(0, len(optimizer.cost_history)): 

    if optimizer.cost_history[x] <= 0.5: 

        print(x) 

        break 

 

Appendix B: Example Code 

Appendix B1: Genetic Algorithm code for Ackley Function 

import math 
import numpy as np 
from geneticalgorithm import geneticalgorithm as ga 
 
def f(X): # FITNESS FUNCTION 
 
    dim=len(X) 
 
    t1=0 
    t2=0 
    for i in range (0,dim): 
        t1+=X[i]**2 
        t2+=math.cos(2*math.pi*X[i]) 
 
    OF=20+math.e-20*math.exp((t1/dim)*-0.2)-math.exp(t2/dim) 
 
    return OF 
 
algorithm_param = {'max_num_iteration': 100, \  
                   'population_size': 100, \ 
                   'mutation_probability':0.1, \ 
                   'elit_ratio': 0.01, \ 
                   'crossover_probability': 0.5, \ 
                   'parents_portion': 0.3, \ 
                   'crossover_type':'uniform', \ 
                   'max_iteration_without_improv': None} 
 
varbound=np.array([[-32.768,32.768]]*2) # BOUNDARIES OF THE SEARCH SPACE FOR THE 
FUNCTION 
model=ga(function=f,dimension=2,variable_type='real', variable_boundaries=varbound, 
algorithm_parameters=algorithm_param) 
model.run() 
# FOR FIXED-TARGET METHOD 
for x in range(0, len(model.report)): 
    if model.report[x] <= 0.5: 
        print(x) 
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        break 
 
solution=model.output_dict 
 

Appendix B1: PSO Algorithm code for Ackley Function 

import matplotlib.pyplot as plt 
import numpy as np 
import pyswarms as ps 
from pyswarms.utils.functions import single_obj as fx 
from pyswarms.utils.plotters import (plot_cost_history) 
 
max_bound = 32.768 * np.ones(2) 
min_bound = - max_bound 
bounds = (min_bound, max_bound) # BOUNDARIES FOR THE SEARCH SPACE 
# Initialize swarm 
options = {'c1': 0.5, 'c2': 0.3, 'w':0.9} 
 
# Call instance of PSO with bounds argument 
optimizer = ps.single.GlobalBestPSO(n_particles=100, dimensions=2, options=options, 
bounds=bounds) 
 
 
# Perform optimization 
cost, pos = optimizer.optimize(fx.ackley, iters=100) # FITNESS FUNCTION ALREADY A 
FEATURE OF PYSWARMS 
plot_cost_history(cost_history=optimizer.cost_history) 
plt.show() 
for x in range(0, len(optimizer.cost_history)): 
    if optimizer.cost_history[x] <= 0.5: 
        print(x) 
        break 
 

 

 

Appendix C: Raw Data 

 

Rastrigin Function Average number of iterations 

to reach accuracy target - 

Fixed-target method 

Average optimization error (Difference between final 

global fitness value best and known solution fitness value) 

– Fixed-cost method 

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 

Genetic Algorithm 98 

 

60 

 

111 

 

55 

 

43 

 

1.54982 

 

0.56706 1.02741 

 

0.44891 0.50069 

 

Particle Swarm 

Optimization Algorithm 

191 

 

76 

 

49 

 

322 

 

77 

 

1.99006 

 

1.98994 

 

0.21406 

 

0.00040 

 

0.99506 
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Easom 

Function 

Average number of 

iterations to reach 

accuracy target - Fixed-

target method 

Average optimization error (Difference between final global fitness value 

best and known solution fitness value) – Fixed-cost method 

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 

Genetic 

Algorithm 

 

35 

 

106 

 

141 

 

56 

 

122 

 

0.42074 

 

0.06539 

 

0.20113 

 

0.00313 

 

0.000000374 

Particle 

Swarm 

Optimization 

Algorithm 

11 7 13 11 5 0.00000228 0.00000184 0.00000406 0.00000011 0.00000166 

 

Three-Hump 

Camel 

Function 

Average number of 

iterations to reach 

accuracy target - Fixed-

target method 

Average optimization error (Difference between final global fitness value 

best and known solution fitness value) – Fixed-cost method 

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 

Genetic 

Algorithm 

 

140 

 

209 

 

42 

 

155 

 

198 

 

0.0000711 

 

0.0005366 

 

0.0037370 

 

0.0003544 

 

0.0008441 

 

Particle 

Swarm 

Optimization 

Algorithm 

14 

 

45 

 

21 

 

15 

 

16 

 

0.000000007 

 

 

0.000000108 

 

0.000000132 

 

0.000000118 

 

0.0000000237 

 

Ackley 

Function 

Average number of 

iterations to reach 

accuracy target - Fixed-

target method 

Average optimization error (Difference between final global fitness value 

best and known solution fitness value) – Fixed-cost method 
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T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 

Genetic 

Algorithm 

 

356 

 

599 

 

700 

 

641 

 

648 

 

20.0098 

 

2.5428 

 

20.0115 

 

20.0053 

 

20.0062 

 

Particle 

Swarm 

Optimization 

Algorithm 

53 

 

44 

 

57 

 

60 

 

60 

 

0.019934 

 

 

 

0.018503 

 

0.020196 

 

0.011347 

 

0.010289 
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