
Computer Science Extended Essay:

Investigating the efficiency and effectiveness of neural networks on computational biology

non-polynomial time tasks

Research Question:

How accurate and efficient are different neural networks in solving the protein folding problem?

Word Count: 3944

CS EE World
https://cseeworld.wixsite.com/home
26/34 (A)
May 2022
Anonymous Donation

1

Table of Contents

1. Introduction ……………………………………………………………………………….. 2

2. Background Information …………………………………………………………………. 3

2.1 The Protein Folding Problem ……………………………………………………… 3

2.2 Multilayer Neural Networks ……………………………………………………….. 4

2.3 Recurrent Neural Networks …………………………………………………………7

2.4 Long Short Term Memory Neural Networks ………………………………………. 8

2.5 Transformers ………………………………………………………………………. 11

3. The Experiment …………………………………………………………………………... 13

3.1 Methodology ……………………………………………………………………… 13

3.2 Results and Analysis ……………………………………………………………… 15

3.3 Evaluation …………………………………………………………………………. 21

4. Conclusion ………………………………………………………………………………... 21

5. References …………………………………………………………………………………. 23

6. Appendix ……………………………………………………………..……………………. 25

2

1. Introduction

The protein folding problem has remained as one of the most ubiquitous unsolved problems in

modern computational biology. However, with growing innovation in the field of neural

networks and their unprecedented ability to solve complex tasks, there have been major attempts

and advances in using neural networks to solve the protein folding problem. As most recently

demonstrated by Google’s AlphaFold neural network, which can accurately predict how a

protein folds 100 times better than conventional computational methods (Alphafold, 2020), there

is serious upside to using neural networks over conventional algorithms to solve this problem.

Determining which neural network architectures and neural network features to use for optimal

performance is still unclear however.

This essay seeks to compare the accuracy and efficiency of various neural networks on their

ability to solve the protein folding problem. This essay evaluates four neural network

architectures, a multilayer network, a recurrent neural network, a long short term memory

network and a transformer on their accuracy on the problem, and conversely, the time and space

complexity in order to perform predictions.

In order to investigate the accuracy and efficiency of each of the various neural networks, each

network was programmed with the open-source machine learning framework Tensorflow (Abadi

et al, 2015) and trained and tested with data from The Protein Data Bank. Runtime and accuracy

based on the distance of each amino acid of the predicted structure to the real structure was used

to evaluate each network's efficiency and accuracy.

3

This research question is worthy of investigation because it justifies the use of neural networks in

the context of the protein folding problem, but in a broader context, in computational biology

and shows the capacity to which they can be leveraged. Moreover, this research question helps to

clarify the existing use of certain neural networks over others for their superior effectiveness.

2. Background Information

2.1 The Protein Folding Problem

Proteins are molecules within cells composed of amino acids that perform most functions that

allow the cell to live and thrive. The structure of a protein directly determines how that protein

will function. Protein folding is a complex biological process that turns a connected string of

amino acids into the complex structure (Simmons, 2018). Thus, the protein folding problem is

concerned with finding the three-dimensional atomic structure of a protein given its amino acid

constituents.

Chemically, proteins fold into a structure which minimizes the net energy distribution among the

entire protein. As amino acids are characterized by individual molecules, the folded structure

minimizes the repulsion and attraction between each of the individual atoms that make up the

protein (Lieff, 2012). This chemical process materializes quite quickly in the real world,

however, simulating each individual atom and its relation to each other individual atom is

computationally complex. To contextualize this complexity, consider the average protein in the

human body: the average protein in the human body has 144 amino acid constituents, with each

amino acid having around 136 atoms. To minimize the energy of each atom, one would have to

4

compare each atom to each other, leading to roughly 1958419584 calculations to compute the most

ideal structure. In Big O notation, given the number of atoms n, it would take O(nn) time to fold a

protein. This is considered a non-deterministic polynomial-time problem. It takes an exponential

amount of time to solve for the structure of a protein, as the number of atoms scales. Thus it is

infeasible to use a simulative method to solve this problem, which is why the necessity for other

solutions exist.

This is the goal of neural networks in the context of this problem, to approximate the structure of

proteins in a feasible runtime. The rest of this section further explains the mechanism in which

this is achieved.

2.2 Multilayer Neural Networks

The overarching goal of neural networks is to take some input and map it to an output, by using a

differentiable function with changeable parameters that map the input to the output (usually

through addition or multiplication). These parameters, known as weights and biases, are learnt

over time by providing the network with examples of known input-output pairs and having it

iteratively get better (Brownlee, 2016).

These networks are composed of singular neurons, or simple functions that accept some number

of inputs and produce a singular output value. Each input is multiplied by its own weight—some

parameter, and all the values are added together, to produce the output value. The weights are

optimized over time to create the best outputs. This operation is represented by taking the dot

product of two vectors, an input vector X, and a weight vector W, to produce a singular value, z.

5

This singular value is then entered into an activation function, which is a nonlinear function that

allows the output to be better characterized, which will greatly increase the speed of learning.

Figure 1: Single neuron input and output graph

Each of these individual neurons are stacked alongside other neurons to comprise a layer. This

mimics much of how computation in brains occurs, with multiple neurons firing together

simultaneously to perform some function in the brain. By having multiple neurons in a layer, the

input and intermediary outputs can be represented in a higher dimensionality (by more weights),

and thus, more value can be extracted from them. To illustrate this point, Figure 1 depicts an

input being mapped to a layer 2 times its size, which allows the network to create better informed

outputs. Since one weight vector is needed to represent all the weights for a single neuron, each

weight vector for each neuron can be transposed and stacked together to create a weight matrix

that represents the weights for the entire layer.

These layers are finally connected together, creating a multilayer network. Each neuron in one

layer maps its output to each other neuron in the layer next to it, effectively creating relationships

between each of the layers. Once again, this is similar to how brains perform complex functions,

by firing interconnected neurons together in sequence. Layers are important because after each

layer, some parts of the input can be determined to be more important than the others, and

6

following layers can use that information to better compute an output. In the context of the

protein folding problem, some amino acids may be determined to be more important than others,

which the network can pick up over time and use to create better predictions about the structure

of the protein.

To create accurate predictions, the weights of the entire neural network must be tuned to optimal

values such that they produce optimal predictions. How does one know what optimal predictions

look like? By letting the network predict values for certain inputs, and comparing the predicted

values against the ground-truth values, one can get any idea of how far off the model is from

accurate predictions. By using a loss function, the model’s accuracy can be quantified and

tangible. Most loss functions take the predicted values and subtract them from the ground-truth

values, leading to a number which represents how inaccurate the model is, with a larger number

representing more inaccurate.

By optimizing the loss function, such that it is the lowest value possible, the model will perform

better. By considering how changing the weights affects the loss function, the weights can be

tuned to optimal values. By taking the derivative of the loss function with respect to the weights

of the model, it can be precisely determined how the weights affect the loss function value. By

descending down the derivative of the loss with respect to the weights, it can be determined what

values of the weights will yield a lower value of the loss, as seen depicted in Figure 2. Thus, by

descending down the derivative, or gradient, it will lead to optimized weights and thus, a better

performing model.

7

Figure 2: Performing gradient descent on a “cost” (loss) function

2.3 Recurrent Neural Networks

One downside of multilayer neural networks is that they can not consider the relationships

between certain parts of the data in relation to each other. It cannot use the characteristics of

sequential data, where one part of the data directly affects the next part of the data (Akkaya,

2019). In the context of the protein folding problem, one amino acid that is adjacent to another

amino acid directly affects how that one amino acid will fold. Sequential information is key in

figuring out how a protein will fold, thus incorporating this information is vital to a neural

network's performance.

Recurrent neural networks allow sequential data to be better analyzed and considered in a

model's predictions. The simple idea of a recurrent neural network is to feed data sequentially, as

opposed to everything together, and supply the output of the previous prediction into the current

one. By doing so, there’s explicit reference to past data, and explicit use of the past data in the

calculations for the current one. For the protein folding problem, one could predict the position

of each amino acid, as opposed to all of them together, and supply the position of each past

8

amino acid when predicting the current amino acid. This relates how the position of one amino

acid directly affects the other, and allows the model to pick up on the chemical interactions

between all the amino acids.

Additionally, by putting two recurrent neural networks together, and having one predict the

position of an amino acid in the future, and then using that information to predict the position of

the current amino acid, the model can use both past and future positional information in its

calculations. This is known as a bidirectional recurrent neural network, because it incorporates

information in both directions, in the past and future.

One key assumption of recurrent neural networks is that it assumes the information from the past

in a sequence are all the same in importance. The first input in the sequence is treated as valuable

as the second input in the sequence. This is problematic for protein folding, as one amino acid

may have more of a bond to the current amino acid as opposed to another one. The weightage of

importance is not considered. Furthermore, information about data seen a long time ago by the

network is gradually lost. This is known as the vanishing gradient problem, and does not allow

the network to use the entire breadth of information for use (Bohra, 2021). Long-short term

memory networks aim to improve this downside.

2.4 Long Short Term Memory Neural Networks

Long short term memory networks (LSTMs) run on the same fundamental idea as RNNs, rather,

they create a more complex memory state that is passed onto the next neural network to multiply

against the input of the next input in a sequence.

9

LSTMs comprise of 4 gates, or series of operations that produce a long-term hidden state, which

is a vector of information that propagates the long-term context of some data, and an output,

which is used to compute the predictive value (Singhal, 2020).

Figure 3: Long-term gate representation of an LSTM

The core gate to an LSTM is the long-term gate which runs unaffected by many independent

operations. This passes long-term information, and directly interacts with other gates to alter the

long term state. The multiplication operation is done with the output of the forget gate, and

affects the long-term state by forgetting and strengthening certain information composed in the

long-term state, as depicted in Figure 3. The addition operation adds new information from the

long term state with the output of the new gate, which can create new long-term dependencies

that are key to predicting the output of new sequences.

Figure 4: Forget gate representation of an LSTM

10

The forget gate determines what information to remove in long-term memory. It does this by the

last hidden state and current input through a neural network layer, using some optimized weights.

The following output is then run through a sigmoid function, which gives each value of the

resulting vector a number between 0 and 1, where 0 means to forget that certain information, and

1 means to keep it, Each value in the matrix is multiplied as a scalar against the current long term

state, to compose a new long term state, or long term information, as shown in Figure 4.

Figure 5: Add state representation of an LSTM

The add state adds new information by running the input and past hidden state through two

neural network layers, one sigmoid layer, which is similar to the forget gate, which determines

how important each piece of the new information is, and a tanh layer, which determines what

new information to add, as depicted in Figure 5. Once again, weights perform these operations,

and learn overtime what values to be to provide accurate outputs and information.

Figure 6: Short-term memory state representation of an LSTM

11

Finally, the output of the LSTM is determined by multiplying the last hidden state with the

long-term memory state to produce a short term memory state. This encodes short-term

information about the sequence that is being provided to the network, and is propagated and

changed to reflect how the information changes.

It’s important to note that the final output of an LSTM network is some combination of the

long-term state with the short-term state, which can be interpreted by more standard layers to

produce an output. This mimics encoding important information and decoding it to produce a

new sequence. In fact, the process of explicitly encoding and decoding information is what

occurs in Transformer networks.

2.5 Transformers

Both LSTMs and RNNs try to incorporate the relationship between pieces of information in a

sequence together. The biggest downside of LSTMs and RNNs is that these relationships are not

explicit, instead it is more or less upto the neural network to determine what relationships are

important in predicting the output. Especially in protein folding, each amino acid has an explicit

relationship to any other amino acid—in the form of repulsion or attraction—and by not

considering even a singular interaction can yield a widely different result from the ground truth.

Transformers solve this by explicitly determining how important the relationship of each amino

acid is to any other amino acid. The mechanism it uses to do so is called attention (Alammar,

2018). The transformer uses weights to create an attention matrix, which is a N by N matrix

(where N represents the number of pieces of data in the sequence) where the cell NkJ has a

12

singular value between 0 and 1 (where 0 is representative of unimportant and 1 is important) that

represents the importance of the relationship between K and J, as depicted in Figure 7. By doing

so, the matrix has information about the relationship of each piece of data against every other

piece of data. The only downside to this is that one would need to allocate N2 memory to store all

the information (which can scale up very quickly).

Figure 7: Attention matrix for amino acid sequences (amino acids as “residues”)

Transformers are also unique in the way they decode the attention matrix. They first create

multiple attention matrices, and then decode them asynchronously adding them all up at the end.

The decoding process of the information happens multiple times independently, which reduces

the randomness and accuracy of the neural network to create correct attention matrices. Finally,

regular neural network layers are dotted against these matrices to produce an output.

13

3. Experimentation

3.1 Methodology

Using Python 3 and the open-source machine learning framework Tensorflow, I programmed a

multilayer network, a recurrent neural network, a long-short term memory network and a

transformer that predicts protein structures based on data from the Protein Data Bank. The

networks were made using Tensorflow’s Functional API, which allows for more complex neural

networks. The code for these models can be found in the appendix.

The task for each model is to accept a sequence of amino acids, and produce a pairwise distance

matrix, where each column and row represents a different amino acid, as shown in Figure 8. A

position in this matrix represents the distance between two amino acids in angstroms (the typical

unit of distance when measuring on this scale). This matrix holds the information to construct a

3D representation of the protein sequence, and since in a matrix form, makes it ideal for

networks to work with.

Figure 8: Output representation of a protein from neural network model

Instead of using the entirety of the Protein Data Bank, a criteria was used to select proteins for

the dataset that are ideal for training. Firstly, only protein structures determined by X-ray

14

diffraction were used as data points within the dataset. This was to ensure the accuracy of the

dataset, as X-ray diffraction produces the most accurate models for proteins (Smyth, 2000).

Secondly, only proteins that were 100 to 400 amino acids in length were used in the dataset, as to

reduce the complexity for the models and to reduce the training time. Lastly, only proteins found

in mamillians were used, to reduce amino acid selectivity bias in other types of organisms. The

resulting dataset had 24113 proteins.

19290 data points (80%) of the dataset was used for training the models, and the rest, 4823 data

points (20%), for testing. In the training dataset, a further breakdown of 5787 data points (30%),

was used for validation, data which the model has never seen, to ensure that it is not just

memorizing the training dataset, and instead learning to make predictions. The last 13503 data

points (70%) of the training dataset was used to train the models.

To measure how good a model is doing—the loss function—the root mean squared deviation

function is used to determine how accurate a prediction is. It works by taking the predicted

distance matrix, and compares each ground truth distance by how close the predicted and real

value was, producing a final difference over all the distances. A lower value means a more

correct prediction. This loss function is used for accuracy and also as the optimization function

for the models. This loss function was optimized with the use of gradient descent.

To measure the runtime and memory complexity of each model, at every epoch, the runtime and

memory used will be taken, and averaged across all epochs. This is done through Tensorflow.

15

Multiple instances of the model will be trained, using increasing dataset sizes, to see how the

runtime and memory scale.

3.2 Results & Analysis

The models were run, and as they were running, the loss of the models and accuracy was

measured after every epoch. The runtime and memory usage was also recorded. This data was

exported, and graphed using Google Sheets, showing the trends of the accuracy overtime. The

graphs and tables for each of the models are below:

Figure 9: The accuracy of the multilayer neural network over a training time of 300 epochs

Table 1: Runtime and memory usage for multilayer neural network

Number of Training Examples Average Runtime
per Epoch (s)

Average Memory Usage per Epoch
(mega bytes)

1000 15.8 5

2000 16.3 22

3000 14.3 37

16

4000 15.4 48

5000 18.2 69

6000 13.5 84

7000 14.5 93

8000 15.6 113

9000 16.1 129

10000 16.1 142

Firstly, the multilayer network didn’t make any improvement whatsoever while training, as seen

in Figure 9, meaning that it is likely that the model is unable to pick up on the chemical

interactions between amino acids and find any complex relationships. Due to this, the model

effectively had a 0% accuracy when predicting amino acid structures on the training and the test

set, as seen in Figure 9. The runtime was constant, and the memory usage was linear, indicating a

very efficient model, as seen in Table 1.

Figure 10: The accuracy of the recurrent neural network over a training time of 300 epochs

17

Table 2: Runtime and memory usage for recurrent neural network

Number of Training Examples Average Runtime
per Epoch (seconds)

Average Memory Usage per Epoch
(megabytes)

1000 21.3 23

2000 23.5 55

3000 26.1 85

4000 28.3 119

5000 30.4 142

6000 32.7 174

7000 34.6 209

8000 36.9 240

9000 39.1 265

10000 41.2 296

The recurrent model starts to learn and pick up on relationships during the beginning of it’s

training phase. However, it quickly plateaus around the 10% mark, meaning it can accurately

predict the amino acids positions 10% of the time, as seen from Figure 10. On the test set, it

performed expectedly worse, at around 8%, but since it wasn’t a large drop, it indicates that these

relationships that the model developed are somewhat representative of general chemical

interactions. The runtime and memory usage scaled linearly, meaning that the model was

somewhat efficient, and did not scale up unfeasibly, as seen in Table 2.

18

Figure 11: The accuracy of the long short term memory network over a training time of 300
epochs

Table 3: Runtime and memory usage for long short term memory network

Number of Training Examples Average Runtime
per Epoch (seconds)

Average Memory Usage per Epoch
(bytes)

1000 21.3 43

2000 26.2 95

3000 31.4 145

4000 37.1 198

5000 42.5 245

6000 47.9 301

7000 53.2 348

8000 58.9 398

9000 64.2 444

10000 69.8 492

19

The long-short term memory model interestingly performs only a little better then the recurrent

model, with a final accuracy of around 15%, as seen in Figure 11. This is likely due to the fact

that the model is more nuanced in it’s relationships between amino acids, but it is still not

significant enough to be a good predictor of amino acid positions. The distinct advantage of this

model was it’s efficiency, having it use the least amount of memory and its runtime being linear,

as seen in Table 3.

Figure 12: The accuracy of the transformer network over a training time of 300 epochs

Table 4: Runtime and memory usage for transformer network

Number of Training Examples Average Runtime
per Epoch (seconds)

Average Memory Usage per Epoch
(megabytes)

1000 31.3 20

2000 32.7 50

3000 37.2 140

20

4000 44.7 290

5000 68.7 500

6000 85.2 770

7000 104.7 1100

8000 127.2 1490

9000 152.7 1940

10000 181.2 2450

The transformer outperformed all the models by a significant margin. It had an accuracy of

around 50%, with the testing accuracy being 43%, as seen in Figure 12. This is likely due to the

fact that the model creates explicit relationships between each amino acid sequence, which is

ideal for the protein-folding problem and better learns the interactions in general chemistry. It

can be seen that for a model that predicts chemical interactions, it needs to factor in every

interaction possible, as this greatly determines the final output of an interaction. The largest

downside of this complete interaction-based model is it’s memory usage. It had the most memory

use and largest run time for training as compared to all the other models, almost 3 times per

epoch more compared to the long-short term memory network model, as seen in Table 4.

From the results of this experiment, it is evident that the artificial intelligence approach that

factors in explicit interactions between molecules yields more accurate predictions on the

protein-folding problem, yet sacrifices efficiency overall.

21

3.3 Evaluation

In retrospect, the hyperparameters of the models (eg. weights in layers, number of epochs

trained, batch size for gradient descent, etc.) may have not been optimized prior to beginning to

train the models. For future experimentation, by running multiple instances of the models with

different hyperparameters, and quickly seeing which models started to learn better, a model with

more optimized hyperparameters could have been selected and used for training, likely yielding

better results. Additionally, due to technical limitations with memory scalability, only proteins

with amino acids of 100 to 400 length were used. This is best illustrated with the transformer,

which scales up at O(n2), and to rectify this limitation in the future, leveraging cloud computing

and instances can be used to automatically scale memory capacity when needed for the models.

4. Conclusion

The experiment that was conducted confirms that neural networks lead to more accurate

predictions on the protein-folding problem, and some neural networks were more accurate due to

specific features of the networks. It is clear that some models were more accurate than others,

and were more efficient. In particular, networks that emphasized the interaction between amino

acids performed better than other models—as seen with the long-short term memory network

and transformer. However, these networks become more inefficient as the interactions between

amino acids become more explicit in the model’s function. The runtime and memory usage

begins to scale up very quickly as the model’s structure stores more information about the

interactions between amino acids. Even with more computational power, when working with

large biological molecules—that can span up to hundreds of thousands of atoms—these models

become less feasible in an applicative context. However, it is evident that these models still

22

outperform classical algorithmic methods, being faster and more efficient. The major bottleneck

for the use of neural networks in computational biology tasks still remains to be better

computation. Through conducting this investigation, I learnt a lot about neural networks and how

they function on a mathematical level, and how to apply neural networks to difficult problems

using programming languages and technical skills.

Neural networks still can further be improved to reduce the time complexity, and memory usage

complexity when working on non-polynomial computational biology tasks. As the landscape of

biochemistry is immensely complex, a model that encapsulates this complexity will perform the

best, which is evident through the experiment, with each better-performing model having more

complex functionality. In order to capture this complexity, and reduce the time required to run

these models, new methods in neural networks will need to be developed. However, it is

abundantly clear that neural networks are the best approach to solving these problems, and have

immense potential to radically change how we think about biological systems.

23

5.0 References

Abadi et al. (2015) TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems.

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45

166.pdf

Akkaya, B. (2019, September 3). Comparison of Multi-class Classification Algorithms on

Early Diagnosis of Heart Diseases. Research Gate.

https://www.researchgate.net/figure/Multilayer-Perceptron-Advantages-and-Disad

vantages_tbl4_338950098

Alammar, J. (2018, June 27). The Illustrated Transformer.

https://jalammar.github.io/illustrated-transformer/

Bohra, Y. (2021, June 18). The Challenge of Vanishing/Exploding Gradients in Deep

Neural Networks. Analytics Vidhya.

https://www.analyticsvidhya.com/blog/2021/06/the-challenge-of-vanishing-explo

ding-gradients-in-deep-neural-networks/

Brownlee, J. (2016, May 27). Crash Course On Multi-Layer Perceptron Neural

Networks. Machine Learning Mastery.

https://machinelearningmastery.com/neural-networks-crash-course/

Lieff, J. (2012, December 10). Protein Folding in the Neuron.

https://jonlieffmd.com/blog/protein-folding-and-the-mind#:~:text=Chain%20Entr

opy%20%E2%80%93%20This%20is%20a,is%20a%20very%20stable%20state.

24

Singhal, G. (2020, September 9). Introduction to LSTM Units in RNN. Pluralsight.

https://www.pluralsight.com/guides/introduction-to-lstm-units-in-rnn

Simmons, W. (2018, November 19). Protein Folding and Machine Learning:

Fundamentals. Arxiv.

https://arxiv.org/abs/1811.09536

Smyth, M. (2000, February). X-Ray crystallography. National Center for Biotechnology

Information

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1186895/

The Alphafold Team. (2020, November 19). AlphaFold: a solution to a 50-year-old

grand challenge in biology. Deepmind.

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-ch

allenge-in-biology`

25

6.0 Appendix

The following program has the code that defines each of the models, and runs them using

Tensorflow, and Numpy. The model was run using a 1060 TI GPU, with 16GB of RAM.

Packages and libraries for programs and models to run

import numpy as np

import tensorflow as tf

import tensorflow_datasets as tfds

from tensorflow.keras.layers import *

from tensorflow.keras.models import Model

import csv

Getting the Protein Databank dataset

def get_dataset():

Load the dataset using tensorflow built-in dataset function

dataset = tfds.load('pdb', split="train[80%:]", shuffle_files=True)

refined_dataset = np.array()

Processing data

for data in dataset:

Only using data that is 100 - 400 amino acids long, and is determined

using x-ray crystallography

if ((len(data[0]) < 400 and len(data[0]) > 100) and (data.method=="xray")):

refined_dataset.append(data)

Each Datapoint is 400 characters long in order for models to run

refined_dataset=tf.pad(refined_dataset)

return refined_dataset

Multilayer model structure

def multilayer_model():

input = Input(shape=400)

Defining multilayer model architecture

multilayer_model = Dense(units=10000, activation='relu')(input)

multilayer_model = Dense(units=5000, activation='relu')(multilayer_model)

multilayer_model = Dense(units=2500, activation='relu')(multilayer_model)

multilayer_model = Dense(units=5000, activation='relu')(multilayer_model)

multilayer_model = Dense(units=10000, activation='relu')(multilayer_model)

multilayer_model = Dense(units=50000, activation='relu')(multilayer_model)

output = Dense(160000, activation='sigmoid')(multilayer_model)

model = Model(inputs=input)

Compiling the Model (setting loss function, optimizer, and metrics)

model.compile(loss='rmsd',optimizer='adam',metrics=['accuracy'])

26

return model

RNN model structure

def rnn_model():

input = Input(shape=400)

Defining RNN model architecture

rnn_model = RNN(units=500, return_sequences=True)(input)

rnn_model = RNN(units=250, return_sequences=True)(rnn_model)

rnn_model = RNN(units=125, return_sequences=True)(rnn_model)

rnn_model = RNN(units=100, return_sequences=True)(rnn_model)

rnn_model = RNN(units=75, return_sequences=True)(rnn_model)

rnn_model = RNN(units=75, return_sequences=True)(rnn_model)

output = Dense(160000, activation='sigmoid')(rnn_model)

model=Model(inputs=input, outputs=output)

Compiling the model (setting loss function, optimizer, and metrics)

model.compile(loss='rmsd',optimizer='adam',metrics=['accuracy'])

return model

LSTM model structure

def lstm_model():

input = Input(shape=400)

Defining LSTM model architecture

lstm_model = LSTM(units=100, return_sequences=True)(input)

lstm_model = LSTM(units=100, return_sequences=True)(lstm_model)

lstm_model = LSTM(units=100, return_sequences=True)(lstm_model)

lstm_model = LSTM(units=100, return_sequences=True)(lstm_model)

lstm_model = LSTM(units=100, return_sequences=True)(lstm_model)

lstm_model = LSTM(units=100, return_sequences=True)(lstm_model)

lstm_model = LSTM(units=100, return_sequences=True)(lstm_model)

output = Dense(160000, activation='sigmoid')(lstm_model)

model=Model(inputs=input, outputs=output)

Compiling the model (setting loss function, optimizer, and metrics)

model.compile(loss='rmsd',optimizer='adam',metrics=['accuracy'])

return model

Transformer model structure

def transformer_model():

input = Input(shape=400)

Defining Transformer model architecture

inputs = Input(shape=(None, 400))

27

start = LSTM(20, return_state=True)

e_outputs, h, c = start(inputs)

states = [h, c]

d_inputs = Input(shape=(None, 20))

d_lstm = LSTM(400, return_sequences=True, return_state=True)

outputs, _, _ = d_lstm(d_inputs, initial_state=states)

decoder_dense = Dense(160000, activation='softmax')

decoder_outputs = decoder_dense(decoder_outputs)

model = Model([inputs, d_inputs], outputs)

Compiling the model (setting loss function, optimizer, and metrics)

model.compile(loss='rmsd',optimizer='adam',metrics=['accuracy'])

return model

Function that runs each model and saves the results

def run_model(epochs, model, dataset):

model.fit(dataset, epochs=epochs)

return model.history

Function that writes the results to a csv file

def save_data(history, model_name):

with open(model_name+'.csv', mode='w') as csv_file:

fieldnames = ['loss', 'accuracy']

writer = csv.DictWriter(csv_file, fieldnames=fieldnames)

writer.writeheader()

writer.writerow({'loss': history.history['loss'], 'accuracy':

history.history['accuracy']})

writer.writerow({"memory": history.memory, "time": history.time})

Running Each model and saving the results

data_collection_mlm = run_model(300, multilayer_model(), get_dataset())

save_data(data_collection_mlm, 'multilayer_model')

data_collection_rnn = run_model(300, rnn_model(), get_dataset())

save_data(data_collection_mlm, 'rnn_model')

data_collection_lstm = run_model(300, lstm_model(), get_dataset())

save_data(data_collection_mlm, 'lstm_model')

data_collection_trans = run_model(300, transformer_model(), get_dataset())

save_data(data_collection_mlm, 'transformer_model')

