
1

How effective are graph path searching and traversing

algorithms compared to tree ones?

Word Count: 3603

Subject: Computer Science

May 2020 Session

Candidate Number:hrs196

CS EE World
https://cseeworld.wixsite.com/home
May 2020
17/34
C
Submitter Info:
Name: Murad
Email: muradshahmamadli [at] gmail [dot] com
Accepted into: The University of British Columbia

 2

Table of Contents

How effective are graph path searching and traversing algorithms
compared to tree ones? 1

Introduction 2

Theory 3
2.1 Graphs 3
2.1.1 Graph Traversal Algorithms 6
2.1.2 Greedy Best-First Search 9
2.1.3 A* Search 10
2.2 Trees 12
2.2.1 Binary Search Trees(BST) 13
2.2.2 B-Trees 17

Practice 19
3.1 Procedure 19
3.2 Small Graphs 20
3.3 Larger Graph 23

Analysis of results 27
4.1 Small Graphs 27
4.2 Larger Graphs 28

Conclusion 29

 3

1. Introduction

 Searching is one of the most pivotal aspects of not only programming but also our

daily lives. Hence, it must come as no surprise that the most popular website is a

search engine. However, searching is an arduous task as sometimes there can be

millions or even billions of pieces of data. To simplify and speed up the process of

searching, various algorithms have been made. In this essay, we will explore two main

categories of algorithms graphs and trees. Graphs are networks of nodes connected in

with specific rules. Trees, on the other hand, arranges it’s nodes in sorted order. We will

compare Graph Traversal Algorithms, Greedy Best-First Search, A* search, Binary

Search trees, and B Trees. Python will be used to run these algorithms, and the same

samples of data will be given to all algorithms. The comparison will focus on memory

usage and execution time.

2. Theory

 ​2.1 Graphs

 In computer science, Graphs are abstract data structures, meaning they are governed

by a set of operations. Graphs are made up of vertices and edges. Vertices store a

value of a certain type. Theoretically, there can be a finite or infinite number of vertices.

Edges are the pathways between two vertices. If two vertices are connected by edges

they are ​adjacent​.

 4

 Graphs are divided into a myriad of categories, in this essay, however, we will only

take a look at ​directed​ and ​undirected​ graphs as well as weighted ones. In undirected

graphs, all edges are ​bidirectional , meaning that if A has an edge to B, then B is 1

automatically connected with A. Directed graphs, however, edges have directions. So A

can have an edge directed to B, but that doesn’t necessarily mean that B has an edge

towards B.

A ​B​

Figure 2.1.1 ​A.​Example of an undirected graph. ​B.​ Example of a directed graph

In the examples provided above in figure 2.1.1, we can see both kinds of graphs. We

can show the graphs as a set in the following form:

The vertex set will be the same for both graphs since they have the same vertices.

1 ​Nykamp DQ​, “Undirected graph definition.” From ​Math Insight​.
http://mathinsight.org/definition/undirected_graph

https://mathinsight.org/contributor/dqnykamp
http://mathinsight.org/definition/undirected_graph

 5

As seen clearly, the set of edges is completely different. Since the “adjacency relation is

symmetric” in undirected graphs, the number of elements in the set corresponds to the

number of edges on the graph. In directed graphs, however, the order of pairs is

important. If the set has (A, B), that means that the edge leads from A to B. That’s why

in our set we have (2,3) and (3,2) since the edge between the nodes is bidirectional.

 In an undirected graph, a ​degree​ is the number of edges leading to the graph. In a

directed graph, in-degree is the number of edges leading into the node and outdegree is

the number of edges leading out of a node.

 The task of programming the graphs is a sufficiently easy one. Code below shows how

we can represent the graphs above, using only one dictionary:

 A ​B

Figure 2.1.2 ​A. ​Python code of an undirected graph. ​B.​ Python code of a directed graph

In the dictionaries above, keys are the nodes of the graph and their values are the

nodes they are connected to. In an undirected graph, we don’t need to specify all the

nodes since the edges are bidirectional. Zero indicates that a node doesn’t have an

outdegree.

 However, in the real world, most graphs are weighted. The meaning of the weight

changes depending on the context, it can mean cost, difficulty, or length of an edge.

Below is an example of a weighted graph.

 6

Figure 2.1.3 Example of a weighted graph

2.1.1 Graph Traversal Algorithms

 Graph Traversal Algorithms are similar to linear search. The process is commenced

from a source and it keeps searching until the desired node is found. There are two

Graph Traversal Algorithms Depth-First Search(DFS) and Breadth-First Search(BFS).

 DFS can be implemented in two ways - iterative and recursive. The recursive function

relies on ​backtracking ​- moving backwards when there are no more nodes to check.

The algorithm of a recursive DFS goes as follows:

1. Pick a source node to start from and add that node to a stack.

2. Move to the adjacent node and add that node to the stack.

3. If the node doesn’t have any unchecked adjacent nodes, remove the node from

the stack and go back.

4. Repeat until the target node is found.

 7

 The iterative function is very similar to the recursive one, except it relies on a while

loop rather than recursion.

 ​Figure 2.1.4 Pseudocode for DFS 2

 BFS, on the other hand, uses queues for storing the vertices. A queue follows the

First-In-First-Out method when traversing the graph. The algorithm is as follows:

1. Select a source node and add the node to a queue.

2. Move to the adjacent nodes and add them to the queue and remove the source

node from the queue.

2 Depth First Search Tutorials & Notes: Algorithms. (n.d.). Retrieved from
https://www.hackerearth.com/practice/algorithms/graphs/depth-first-search/tutorial/

 8

3. Repeat the process until the queue is empty

Figure 2.1.5 Pseudocode for BFS 3

 In both pseudocodes above, we can see that the nodes are always marked as

“visited”. This is done to ensure that the same node is not processed several times and

that the function is not stuck in a loop if there is an edge that is connecting a node to

itself.

 However, unfortunately, BFS and DFS are simple algorithms and can only work with

unweighted graphs. An altered version of BFS known as Djikstra’s algorithm is used to

find the shortest distance in a ​weighted​ graph. After we determine the source and the

goal node, the steps are:

1. Set the distance to source node equal to 0 and to all other nodes equal to infinity.

2. Create a set of “visited nodes”, initially the value is only the source vertex.

3. Create a queue of all the unvisited nodes, initially all nodes except the source.

3Breadth First Search Tutorials & Notes: Algorithms. (n.d.). Retrieved from
https://www.hackerearth.com/practice/algorithms/graphs/breadth-first-search/tutorial/

 9

4. For each node, calculate the distance to its neighbours - distance to current node

+ distance to the neighbour node.

5. If the newly calculated distance is less then their previous value, replace it with

the new one.

6. Repeat for all nodes, until the goal node is reached.

Figure 2.1.6 Pseudocode for Dijkstra's algorithm 4

2.1.2 Greedy Best-First Search

Best-First Search technique is heuristic, meaning, it sacrifices “​optimality, accuracy,

precision, or completeness for speed​” . Unlike the traversal algorithms, Best-First 5

Search algorithms focus more on the weight of the edge and decide where to move

based on which node is the most promising one. It uses an ​f(n)​ function to evaluate the

4 Depth First Search Tutorials & Notes: Algorithms. (n.d.). Retrieved from
https://www.hackerearth.com/practice/algorithms/graphs/depth-first-search/tutorial/
5 ​Vincent Kenny, Matthew Nathal, and Spencer Saldana (ChE 345 Spring 2014)
https://optimization.mccormick.northwestern.edu/index.php/Heuristic_algorithms

https://optimization.mccormick.northwestern.edu/index.php/Heuristic_algorithms

 10

adjacent nodes. The algorithm itself is pretty similar to BFS, but instead of a queue here

we will use a special type of queues - a ​priority queue(PQ)​. The difference between

queues and priority queues is that a PQ has a priority associated with each value in the

queue. In our case, values will be the vertices and the priority will be the weights of the

edges. Usually PQs are implemented with ​Insert(value,priority)​,​DeleteMax()​ and

DeleteMin()​ functions, which insert, delete the element with maximum and minimum

priority respectively.

Figure 2.1.7 Pseudocode for Greedy Best-First Search 6

2.1.3 A* Search

 The final graph traversal algorithm we are going to analyze is the A* Search. To

optimize speed and memory while being executed, A* star combines some aspects of

6(n.d.). Retrieved from
https://courses.cs.washington.edu/courses/cse326/03su/homework/hw3/bestfirstsearch.html

 11

BFS and Greedy Best-First search algorithm. Just like the GBFS, A* is a heuristic

algorithm and it uses ​f(n)​ function to evaluate the first node that should be explored. The

difference between A* and greedy BFS is the ​value of f(n) function. In A*, 7

f(n)=g(n)+h(n), where:

● n is the previous node.

● g(n) is the cost of the path from the source node to the n.

● h(n) is a heuristic estimate of the cheapest cost from n to the target node.

While in the greedy BFS, ​f(n)=h(n)​. There are several ways to estimate the h(n), but for

the sake of this essay, we will have the same predefined estimates for all graphs. It

should also be noticed that A* is a ​complete ​algorithm, meaning it will explore all the

nodes, which might cause us a problem, but more on that later.

Figure 2.1.8 Pseudocode for A* Search

7What are the differences between A* and greedy best-first search? (2018, November 10). Retrieved from
https://ai.stackexchange.com/questions/8902/what-are-the-differences-between-a-and-greedy-best-first-s
earch

https://ai.stackexchange.com/questions/8902/what-are-the-differences-between-a-and-greedy-best-first-search
https://ai.stackexchange.com/questions/8902/what-are-the-differences-between-a-and-greedy-best-first-search

 12

That was all the necessary knowledge of graphs. Now we will move on to a different

type of data structure - Trees.

2.2 Trees

Just like graphs, trees are abstract data types. It’s named a tree because it’s

hierarchical structure reminds us of a tree, though of an inverted one. The top node, the

root of the tree, is one value that can be a ​parent node​ to two ​children​. The node that

has no children is the ​leaf node​. The ​height​ of a tree is the longest path from the root to

the leaf and ​depth​ of a node is its distance to the root. Below is a representation of a

general tree(a tree without any constraints).

Figure 2.2.1 A General Tree

 13

The nodes can have any values: numbers, letters or names. Defining general trees is

pretty simple. The code below is for defining a tree structure in C++.

 Figure 2.2.2 Defining a general tree

Nevertheless, there are many more types of trees with distinctive properties and

operations. In this essay, we will investigate Binary-Search Trees and B-Trees.

2.2.1 Binary Search Trees(BST)

The structure of binary search trees is just like the one of a general tree, the difference

is in the values of nodes and its order. The features of BST are:

● Nodes have to have a numerical value.

● A parent can have at most 2 child nodes.

● Left-child is a node with a lesser value.

● Right-child is a node with a bigger value.

 The fact that nodes are sorted in this order makes functions, such as searching,

inserting and deleting, very swift. However, sometimes the trees can be ​unbalanced​, the

height of the left side is much bigger or smaller than the height of the right side, making

the structure inefficient. This can decrease the efficiency of the tree from O(log n) to

O(n).

 14

Below we can see an example of a balanced Binary-Search Tree:

Figure 2.2.3 Example of a balanced BST

When it comes to traversing a BST, there are three techniques, all of which yield the

same result, but in different orders:

A. Preorder

1. The root

2. The left subtree(recursively until the leaf node)

3. The right subtree(recursively until the leaf node)

 B. Inorder

1. The left subtree(recursively until the leaf node)

2. The root

3. The right subtree(recursively until the leaf node)

 15

 C. ​Postorder

1. The left subtree(recursively until the leaf node)

2. The right subtree(recursively until the leaf node)

3. The root

Figure 2.2.4 Visualization of Preorder, Inorder and Postorder 8

Algorithm for searching for a value in the tree is relatively simple:

1. If the node is equal to the queried value, return the node

2. If the value of the node is bigger than the queried value, explore left

3. Otherwise, explore right.

8 (n.d). Retrieved from https://ib.compscihub.net/wp-content/uploads/2018/07/5.1.16.pdf

 16

 ​Figure 2.2.5 Pseudocode for searching a BST 9

A similar approach is used when finding the shortest distance between two nodes. To

understand the steps, we first need to define the term ​Lowest Common Ancestor(LCA)

of two nodes. The formal definition of LCA is “the shared ancestor of n1 and n2 that is

located farthest from the root” . Now, we can take a look at the steps for finding the 10

shortest path between n1 and n2 in BST : 11

1. Start from the root.

2. Move right if both n1 and n2 are greater than the current node.

3. Move left if both n1 and n2 are less than the current node.

4. If one is smaller and the other is bigger, the current node is an LCA and the

distance is the sum of the distances from n1 to root and n2 to root.

9 Retrieved from https://www.cs.rochester.edu/~gildea/csc282/slides/C12-bst.pdf
10Lowest Common Ancestor in a Binary Tree: Set 1. (2019, July 22). Retrieved from
https://www.geeksforgeeks.org/lowest-common-ancestor-binary-tree-set-1/
11 Shortest distance between two nodes in BST. (2019, June 21). Retrieved from
https://www.geeksforgeeks.org/shortest-distance-between-two-nodes-in-bst/

 17

2.2.2 B-Trees

B-Trees are another type of tree data structures, that are very dissimilar to Binary

Trees. B-Trees are self-balancing, meaning they arrange the nodes in a way to keep the

height as small as possible. This makes the efficiency of the algorithm O(log n) no

matter the number of nodes, while in BST, the efficiency can be as low as O(n) if the

tree is unbalanced. That’s why B-Trees are very useful when handling large databases.

But just like the Binary Search Trees, the values of nodes in B-Trees, known as ​keys​,

can only be numerical.

 B-Trees are defined by a ​minimum degree ​or ​order ​k​. A node can have at most k-1

keys and k children. It’s also vital that the root has at least 1 key and two child nodes.

And every non-leaf node has to have at least ​⌈​k/2​⌉​ children. Finally, all leaves are on

the same level.

 ​There are many rules surrounding B-Trees relative to other data structures, but this all

ensures maximum efficiency when inserting, deleting, traversing and searching the

B-Trees.

 18

 ​Figure 2.2.6 A simple B-Tree with an order of 4

 The figure above is a simple example of a B-Tree of order 3. The root has only 2 keys,

hence 3 children. The first child - 3,4,6 - are values that are less than 8. The second one

- 9,10,11 - are the values between 8 and 12. And the last one is a compilation of keys

more than 12.

 The traversal algorithm for B-Trees is similar to the aforementioned Inorder algorithm

for BST. We start from the leftmost leaf and return all the keys in the node. By repeating

the function recursively, we reach the root and ultimately the rightmost child

.

 ​Figure 2.2.7 Pseudocode for traversing a B-tree

 The search algorithm for B-Trees is relatively simple. Just like the traversal algorithm,

it’s a recursive one. Start from the root, and go through all keys in all nodes until the

desired value is found.

 19

3. Practice

 ​3.1 Procedure

In this part of the essay, we will finally implement all the algorithms we talked about in

part 2. As mentioned earlier, the same graph maps will be used to test the algorithms,

and the main focus will be on the execution time and memory used. To get more

precise measurements, we will have several graph maps. The sizes of graphs will vary

from several nodes to a few thousand and all graphs will be weighted and directed. This

will give us a clearer picture of the effectiveness and the practicality of various

algorithms. The values of the nodes in the graphs will then be imported into BST and

B-Trees, to test the tree algorithms. To conclude, we will calculate the average

execution time and memory of each algorithm, and compare them.

 20

 ​3.2 ​Small Graphs

Figure 3.2.1 First graph map

The first graph to be analyzed is shown above. As mentioned, it’s a directed graph with

the respective weights of paths next to them. In Python, the graph will be defined as:

Figure 3.2.1 Defining a graph in Python

The second graph will be a slightly larger one, with 20 nodes. In total, there will be

graphs with 6, 20, 50 and 100 nodes in the “small section”. For each algorithm, we will

run the trial 2 times to get more precise results. The results for small graphs are below.

 21

Figure 3.2.2 Tables of results for traversing graphs with 6, 20, 50 and 100 nodes, respectively

 22

 23

Figure 3.2.3 Tables of results for path-searching graphs with 6, 20, 50 and 100 nodes,

respectively

 ​3.3 Larger Graph

 In the real world, it’s more common to come across graphs with several thousand, if

not millions, of nodes. An example of this would be Google Maps, where roads are

edges and intersections are vertices. Implementing the abovementioned algorithms on

larger graphs will help us get a clearer picture of the efficiency of each algorithm and a

 24

more vivid view of the correlation between the number of nodes and the execution time

as well as the memory consumption.

 In this section, we will implement a graph map of 1000,5000 and finally 10000 nodes.

 25

 26

Figure 3.3.1 Tables of results for traversing graphs with 1000,5000 and 10000 nodes,

respectively

Figure 3.3.2 Tables of results for path-searching with 1000, 5000, and 10000

respectively

 27

4. Analysis of results

4.1 Small Graphs

 Starting from the traversing algorithms, we have only Depth-First Search, Breadth-First

Search, Binary Search Tree and B-Trees, since other algorithms are not used for

traversing. Out of the four algorithms, DFS has proven to be the fastest with all trials

having an order of magnitude of -7. BFS, on the other hand, was asserted as the

slowest one with the fastest result being ​4.502*10​-5​. BST showed the strongest

correlation between the number of nodes and the time of execution, with 0.7

microseconds taken to traverse a 6 node graph and around 30 microseconds for a 100

node graph. As for the B-Trees, the results ranged from 3 microseconds to 24, also

showing a standard correlation. The difference in memory used by each algorithm was

negligible. In some cases, I was surprised to see that even when I added more nodes to

the graph, the execution time stayed almost the same or the difference was negligible.

One explanation for this is that the difference of 90 nodes for a computer is not that

much to make significant changes in the execution time.

 When coming to path-searching algorithms, a different set of algorithms was used -

Djikstra’s, Greedy BFS, A*, BST and B-Trees. Graph algorithms - Djikstra, GBFS and

A*- were faster in this case and showed a weaker link between the number of nodes

and the time. Djikstra had the fastest result of around 0.7 microseconds and the slowest

one of 3 microseconds. For A*, the order of magnitude stayed the same - -6. Tree

algorithms, contrarily, were slower and showed a strong relationship between the

number of nodes and the execution time. BST had the best result of 0.72 microseconds

 28

in the 6-node-graph and the worst result of 23 microseconds in the 100-node-graph.

The difference in memory was in several kilobytes, which is negligible.

 ​4.2 Larger Graphs

 As more nodes were added to the graph, a significant change was observed in both

execution time and memory usage. With larger graphs, B-Trees was proven to be the

fastest even with 10000 nodes, it took the B-Trees algorithm 376 microseconds to fully

traverse the graphs. Furthermore, BFS performed the worst when it comes to memory

usage as it used 7MB compared to 6.8 of DFS and 5.1 of BST and B-Trees. It should

also be mentioned that BFS algorithms showed a strong link between the number of

nodes and memory complexity, while the tree algorithms didn’t show any throughout the

whole procedure. In this section, the fastest result was obtained by B-Trees 56.5

microseconds and the slowest result belongs to DFS - 0.31 seconds(310000

microseconds).

 In regards to the traversing larger graphs, a similarly large difference between

execution time in each subsequent increase in the number of nodes was remarked. In

this case, Greedy BFS and B-Trees have been proven to be equally effective time-wise,

however, B-Trees has an upper hand memory-wise. Yet again, we witness how graph

algorithms face a significant increase in memory complexity, while the memory usage of

tree algorithms stays the same. The worst performing algorithms were A*, 2500

microseconds at 1000 nodes and 0.40 seconds(400000 microseconds) at 10000, and

Binary-Search Tree, 3100 and 380000 microseconds at 1000 and 10000 nodes

respectively.

 29

5. Conclusion

The purpose of this essay is to compare different traversing and path-searching

algorithms, Graph Traversal Algorithms, Greedy Best-First Search, A* search, Binary

Search trees, and B Trees, based on the time it takes for the program to reach its goal.

Tables and pseudocodes for better visualization were also provided.

Some of the results were unexpected, such as BFS being faster than DFS when the

number of nodes grew, or B-Trees being the fastest algorithm for traversing larger

graphs.

 We also found out that while memory complexity difference is negligible for smaller

graphs, the difference increases exponentially with the number of nodes for graph

algorithms, but stays the same for tree ones.

 Even though most abovementioned algorithms follow a somewhat similar pattern and

logic, there were several reasons that might have caused the difference in execution

time - some algorithms being recursive, different methods of inserting nodes and

importing libraries in some cases. When implementing BST and B-Trees for larger

graphs, a separate function had to be implemented just to increase the recursion limit.

 All algorithms discussed in this essay are used in a myriad of industries. Each has its

own strength and weakness that discussed them above in section 4. It’s important to

analyze all the features of an algorithm before electing it. I hope my essay was useful in

projecting the advantages and drawbacks of some algorithms.

 30

Bibliography

Nykamp DQ​, “Undirected graph definition.” From ​Math Insight​.
http://mathinsight.org/definition/undirected_graph

Depth First Search Tutorials & Notes: Algorithms. (n.d.). Retrieved from
https://www.hackerearth.com/practice/algorithms/graphs/depth-first-search/tutori
al/

Breadth First Search Tutorials & Notes: Algorithms. (n.d.). Retrieved from
https://www.hackerearth.com/practice/algorithms/graphs/breadth-first-search/tuto
rial/

Depth First Search Tutorials & Notes: Algorithms. (n.d.). Retrieved from
https://www.hackerearth.com/practice/algorithms/graphs/depth-first-search/tutori
al/

 ​Vincent Kenny, Matthew Nathal, and Spencer Saldana (ChE 345 Spring 2014)
https://optimization.mccormick.northwestern.edu/index.php/Heuristic_algorithms

(n.d.). Retrieved from
https://courses.cs.washington.edu/courses/cse326/03su/homework/hw3/bestfirst
search.html

What are the differences between A* and greedy best-first search? (2018,
November 10). Retrieved from
https://ai.stackexchange.com/questions/8902/what-are-the-differences-between-
a-and-greedy-best-first-search

(n.d). Retrieved from
https://ib.compscihub.net/wp-content/uploads/2018/07/5.1.16.pdf

Retrieved from ​https://www.cs.rochester.edu/~gildea/csc282/slides/C12-bst.pdf

Lowest Common Ancestor in a Binary Tree: Set 1. (2019, July 22). Retrieved
from https://www.geeksforgeeks.org/lowest-common-ancestor-binary-tree-set-1/

Shortest distance between two nodes in BST. (2019, June 21). Retrieved from
https://www.geeksforgeeks.org/shortest-distance-between-two-nodes-in-bst/

https://mathinsight.org/contributor/dqnykamp
http://mathinsight.org/definition/undirected_graph
https://www.hackerearth.com/practice/algorithms/graphs/depth-first-search/tutorial/
https://www.hackerearth.com/practice/algorithms/graphs/depth-first-search/tutorial/
https://www.hackerearth.com/practice/algorithms/graphs/depth-first-search/tutorial/
https://www.hackerearth.com/practice/algorithms/graphs/depth-first-search/tutorial/
https://optimization.mccormick.northwestern.edu/index.php/Heuristic_algorithms
https://ai.stackexchange.com/questions/8902/what-are-the-differences-between-a-and-greedy-best-first-search
https://ai.stackexchange.com/questions/8902/what-are-the-differences-between-a-and-greedy-best-first-search
https://ib.compscihub.net/wp-content/uploads/2018/07/5.1.16.pdf
https://www.cs.rochester.edu/~gildea/csc282/slides/C12-bst.pdf

 31

Appendices

1. BFS(Python)
from queue import Queue

q = Queue();
q.put(1);
visited = [];
visited.append(None);
for i in Graph:

visited.append(False)
visited.append(False)
visited[1] = True;
while not (q.empty()):

v = q.get();
print(v);
for i in Graph[v]:

 if not (visited[i]):
 visited[i] = True;
 q.put(i);

2. DFS(Python)
visited = [];
stack = []
def DFS(n):

stack.append(Graph[n]);
visited.append(n);
while(len(stack)):

 V = stack[0];
 del stack[0];
 for i in V:
 if i in visited:
 continue;
 stack.append(Graph[i]);
 visited.append(i);

 32

3. Greedy BFS(java, (n.d.). ​Retrieved from
https://raw.githubusercontent.com/aliarjomandbigdeli/search-algorithms/master/src/SearchGreed

yBFS.java ​)
import java.util.Comparator;

/**
 * greedy best first search algorithm
 * Greedy best-first search tries to expand the node that is closest to the goal,
 * on the grounds that this is likely to lead to a solution quickly.
 * Thus, it evaluates nodes by using just the heuristic function(h).
 *
 * @author Ali ArjomandBigdeli
 * @since 12.27.2018
 */
public class SearchGreedyBFS extends Search {
 public SearchGreedyBFS(boolean isGraph) {
 super(isGraph);
 }

 @Override
 public void execute() {
 search();
 }

 @Override
 public void search() {
 f.add(problem.getInitialState());
 nodeSeen++;
 while (!f.isEmpty()) {
 showLists();
 State s = f.remove();
 if (problem.goalTest(s)) {
 answer = s;
 createSolutionPath(s);
 return;
 }

 if (isGraph)
 e.add(s);
 nodeExpand++;

 33

 for (Integer action : problem.actions(s)) {
 State child = problem.nextState(s, action);
 nodeSeen++;
 if (isGraph) {
 if (!e.contains(child) && !f.contains(child)) {
 f.add(child);
 }
 } else {
 f.add(child);
 }
 }
 f.sort(new Comparator<State>() {
 @Override
 public int compare(State s1, State s2) {
 return ((Integer) (problem.h(s1))).compareTo(problem.h(s2));
 }
 });

 maxNodeKeptInMemory = Integer.max(maxNodeKeptInMemory, f.size() + e.size());

 }
 }
}

4. A*(Python, retrieved from
https://stackabuse.com/basic-ai-concepts-a-search-algorithm/)

from collections import deque

class Graph:

def __init__(self, adjacency_list):
 self.adjacency_list = adjacency_list

def get_neighbors(self, v):
 return self.adjacency_list[v]

heuristic function with equal values for all nodes
def h(self, n):

 return 1

def a_star_algorithm(self, start_node, stop_node):
 # open_list is a list of nodes which have been visited, but who's neighbors

 34

 # haven't all been inspected, starts off with the start node
 # closed_list is a list of nodes which have been visited
 # and who's neighbors have been inspected
 open_list = set([start_node])
 closed_list = set([])

 # g contains current distances from start_node to all other nodes
 # the default value (if it's not found in the map) is +infinity
 g = {}

 g[start_node] = 0

 # parents contains an adjacency map of all nodes
 parents = {}
 parents[start_node] = start_node

 while len(open_list) > 0:
 n = None

 # find a node with the lowest value of f() - evaluation function
 for v in open_list:
 if n == None or g[v] + self.h(v) < g[n] + self.h(n):
 n = v;

 if n == None:
 print('Path does not exist!')
 return None

 # if the current node is the stop_node
 # then we begin reconstructin the path from it to the start_node
 if n == stop_node:
 reconst_path = []

 while parents[n] != n:
 reconst_path.append(n)
 n = parents[n]

 reconst_path.append(start_node)

 reconst_path.reverse()

 print('Path found: {}'.format(reconst_path))
 return reconst_path

 35

 # for all neighbors of the current node do
 for (m, weight) in self.get_neighbors(n):
 # if the current node isn't in both open_list and closed_list
 # add it to open_list and note n as it's parent
 if m not in open_list and m not in closed_list:
 open_list.add(m)
 parents[m] = n
 g[m] = g[n] + weight

 # otherwise, check if it's quicker to first visit n, then m
 # and if it is, update parent data and g data
 # and if the node was in the closed_list, move it to open_list
 else:
 if g[m] > g[n] + weight:
 g[m] = g[n] + weight
 parents[m] = n

 if m in closed_list:
 closed_list.remove(m)
 open_list.add(m)

 # remove n from the open_list, and add it to closed_list
 # because all of his neighbors were inspected
 open_list.remove(n)
 closed_list.add(n)

 print('Path does not exist!')
 return None

g = Graph(adjacency_list);

5. BST
class Node:

def __init__(self,val):
 self.val = val;
 self.leftChild = None;
 self.rightChild = None;
 self.leaf = True;

def __str__(self):
 return str(self.val);

 36

class BST:

def __init__(self,nodes=[]):
 self.nodes = nodes;
 self.root = None if len(nodes)==0 else nodes[0];

def insert(self,root,node):
 if self.root==None:
 self.root = node
 else:
 if(root.val<node.val):
 if root.rightChild is None:
 root.rightChild = node
 else:
 self.insert(root.rightChild, node)
 else:
 if root.leftChild is None:
 root.leftChild = node
 else:
 self.insert(root.leftChild, node)

def inorder(self,root):
 if root:
 self.inorder(root.leftChild);
 print(root);
 self.inorder(root.rightChild);

def pathFinding(self,root,find,path=[]):
 path.append(root.val);
 if(root==find):
 return path;
 if(((root.leftChild != None and self.pathFinding(root.leftChild, find, path)) or
 (root.rightChild != None and self.pathFinding(root.rightChild, find, path)))):
 return path;
 path.pop();
 return 0;

def findLCA(self,root,n1,n2):
 path1 = [];
 path2 = [];
 if not self.pathFinding(root,n1,path1) or not self.pathFinding(root,n2,path2):
 return -1;
 i=0;
 while i<min(len(path1),len(path2)):
 if path1[i]!=path2[i]:

 37

 break;
 i+=1;
 return path1[i-1];

6. B-Tree(Python, retrieved from
https://gist.github.com/natekupp/1763661​)
class BTreeNode(object):

def __init__(self, leaf=False):
 self.leaf = leaf
 self.keys = []
 self.c = []

class BTree(object):

def __init__(self, t):
 self.root = BTreeNode(leaf=True)
 self.t = t

def search(self, k, x=None):
 if isinstance(x, BTreeNode):
 i = 0
 while i < len(x.keys) and k > x.keys[i]: # look for index of k
 i += 1
 if i < len(x.keys) and k == x.keys[i]: # found exact match
 return (x, i)
 elif x.leaf: # no match in keys, and is leaf ==> no match exists
 return None
 else: # search children
 return self.search(k, x.c[i])
 else: # no node provided, search root of tree
 return self.search(k, self.root)

def traverse(self,root):
 for i in range(0,self.t):
 if not root.leaf:
 self.traverse(root.c[i]);
 if i in range(-len(root.keys),len(root.keys)):
 print(root.keys[i])

def insert(self, k):
 r = self.root
 if len(r.keys) == (2*self.t) - 1: # keys are full, so we must split

https://gist.github.com/natekupp/1763661

 38

 s = BTreeNode()
 self.root = s
 s.c.insert(0, r) # former root is now 0th child of new root s
 self._split_child(s, 0)
 self._insert_nonfull(s, k)
 else:
 self._insert_nonfull(r, k)

def _insert_nonfull(self, x, k):
 i = len(x.keys) - 1
 if x.leaf:
 # insert a key
 x.keys.append(0)
 while i >= 0 and k < x.keys[i]:
 x.keys[i+1] = x.keys[i]
 i -= 1
 x.keys[i+1] = k
 else:
 # insert a child
 while i >= 0 and k < x.keys[i]:
 i -= 1
 i += 1
 if len(x.c[i].keys) == (2*self.t) - 1:
 self._split_child(x, i)
 if k > x.keys[i]:
 i += 1
 self._insert_nonfull(x.c[i], k)

def _split_child(self, x, i):
 t = self.t
 y = x.c[i]
 z = BTreeNode(leaf=y.leaf)

 # slide all children of x to the right and insert z at i+1.
 x.c.insert(i+1, z)
 x.keys.insert(i, y.keys[t-1])

 # keys of z are t to 2t - 1,
 # y is then 0 to t-2
 z.keys = y.keys[t:(2*t - 1)]
 y.keys = y.keys[0:(t-1)]

 # children of z are t to 2t els of y.c

 39

 if not y.leaf:
 z.c = y.c[t:(2*t)]
 y.c = y.c[0:(t-1)]

