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1 Introduction

1.1 Background

The design and implementation of programming languages has come a
long way since the use of machine code for directly programming com-
puters. These improvements have allowed the development of software
systems larger than ever before, without sacrificing on correctness or ro-
bustness. Type systems are a vital part of programming language design
that have allowed computer programmers to meet the demands for cor-
rect and properly functional programs. One definition of type systems for
programming languages would be: “A type system is a tractable syntactic
method for proving the absence of certain program behaviors by classify-
ing phrases according to the kinds of values they compute” (Pierce 1). In
other words, type systems assign a type to different expressions and con-
structs in a programming language based on properties such as the values
they compute. The type system can then reason about the behavior of a
program bymethodically looking at how different types interact with each
other, and then based on the rules of the type system, decide whether the
program is well-behaved (it adheres to the rules of the system) or not. As
an example, the following Java program fails to compile due to an error in
the type system:

Listing 1: Ill-behaved Java program
int x = 1;

String y = "2";

// error: bad operand types for binary operator ‘/’

System.out.println(x / y);

While the error is obvious in this example, in larger codebases it is not
always easy for the programmer to notice small errors. This is where the
type checker comes in. The job of a type checker (which is usually included
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in the compiler itself) is to ensure that the source code adheres to the rules
of the type system.

1.2 Type Inference

Due to its vast benefits, most compiled languages offer some form of type
checking in order to aid the development of software. However, type
checking has certain drawbacks that make it an inconvenient feature for
programmers in certain situations. One major drawback is that sound
type checking requires that all expressions appearing in the source code
must belong to a certain type. In order to satisfy this requirement, the
programmer has to manually annotate every expression with its type,
such as in the first two lines of Listing 1. This can often lead to overly
verbose code and hinder productivity. For example, one criticism of Java
that influenced the development of the Kotlin programming language was
its verbosity, which in turn leads to poor readability (Breslav).

The solution to this is to have the compiler analyze a program to automat-
ically infer the types of expressions appearing in it. This is known as type
inference (Krishnamurthi). Type inference eliminates the need for pro-
grammers to explicitly annotate expressions. Moreover, type inference can
be integrated within tools such as Integrated Development Environments
(IDEs) to further aid development by, for example, providing documenta-
tion or catching errors before executing the program. Due to its close ties
with the type system, powerful type inference is often also indicative of a
powerful type system.

1.3 Type Inference for OOP Languages

Languages belonging to the functional programming (FP) paradigm, such
as Standard ML or Haskell, have included type inference as a feature for
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a long time. However, it has been largely absent from most common
object-oriented programming (OOP) languages for quite some time, and
has only recently started to become a common feature of some (Melo). This
is because the strong type systems of FP languages lend themselves well to
type inference, whereas for OOP languages certain features (in particular,
polymorphism) make type inference a much more difficult task.

Given the benefits of type inference and type checking, and considering
the popularity of OOP languages, the question of to what extent type
inference is possible for statically typed polymorphic OOP languages is an
interesting one which I was interested to study further.

Note that because OOP is merely a paradigm, languages are free to choose
how closely they adhere to OOP principles. As such, this essay does not
focus on any particular language. Rather, it develops the minimal lambda
calculus (�-calculus) for reasoning about programming languages, and
later extends it with features of polymorphism common (but not strictly
unique) to OOP languages. This is then used to explore and understand
barriers to type inference in OOP languages.
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2 The Lambda Calculus

2.1 Untyped �-calculus

The untyped �-calculus (Church, Introduction to Mathematical Logic; The
Calculi of Lambda-Conversion) is a minimal yet Turing-complete program-
ming language that can be used tomodel computation, using only function
abstraction and application. Its usefulness comes from the fact that it can
be considered not only as a programming language, but also a formal sys-
tem for making and proving logical statements (Pierce). It is an important
tool in programming language design, and will also help us in exploring
type inference for OOP languages. In order to illustrate its use, we will be-
gin with the untyped �-calculus and extend it to obtain the Simply-Typed
Lambda Calculus (STLC).

The syntax of the untyped �-calculus is as follows, using Backus-Naur
form (BNF) notation (see Appendix A for a summary of this notation):

t ::= terms:
G variable
| �G.t abstraction
| t t application

v ::= values:
�G.t abstraction value

As shown above, the syntax comprises of just three terms. Variables, such
as G are terms; abstraction of a variable G over a term t (this is akin to
a function definition with one parameter G, which returns t); and appli-
cation of a term to another term t (this is akin to function application).
The only “value” in �-calculus (that is, an expression that cannot be eval-
uated further) is abstraction itself. Note that unlike other programming
languages, �-calculus does not have any built-in constants or primitives
such as numbers or conditionals.
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“Computation” is reflected by evaluating the terms of an expression to
obtain a simpler expression. The primary evaluation rule in �-calculus is
an evaluation of function application. If an expression contains a function
application of some term t1 to a lambda abstraction t2, then this can be
evaluated by replacing all occurrences of the abstraction variable in t2with
t1. This substitution is written as [G ↦→ t1]t2, which reads as “replace all
free occurrences of G in t2 by t1” (Pierce). For example, the term (�G.G)H
consists of an application of the variable H to the function �G.G. This
function simply returns the argument provided, and so the term (�G.G)H
would evaluate to just H.

This evaluation rule can be more formally expressed using inference rules
(see Appendix A for a summary of this notation):

E-App1:

t1 t2
t1 −→ t’1

t1 t2 −→ t’1 t2
E-App2:

v1 t2
t2 −→ t’2

v1 t2 −→ v1 t’2

E-AppAbs: (�G.t12)v2 −→ [G ↦→ v2]t12

The notation t −→ t’ means that the term t can be evaluated to t’.
Essentially, “−→” represents a ‘computation’ step. Here, the rule E-App1
tells us that the term t1 t2, where t1 −→ t’1, evaluates to t’1 t2. Although
it appears to be obvious, it is important because it specifies the order of
computation: before the function application t1 t2 can be performed, the
term t1 needs to be fully evaluated.

Similarly, the rule E-App2 tells us that the expression v1 t2, where t2 −→
t’2, evaluates to v1 t’2. Here, the (meta-)variable v1 stands for a value
rather than a term, meaning that it cannot be evaluated any further. In
other words, before the function application v1 t2 can be performed, the
term t2 needs to be fully evaluated. Finally, the ruleE-AppAbs tells us how
to perform the function application, which is to perform a substitution.
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2.2 Simply-Typed Lambda Calculus

�-calculus can be extended with types to obtain the STLC. To demonstrate
typing, we will add the boolean type to it. First, we extend the syntax:

t ::= terms:
... (previous terms)
| true true
| false false
| �G : �.t lambda abstraction

v ::= values:
... (previous values)
| true true value
| false false value

� ::= types:
�→ �′ function type
| Bool boolean type

We have added the two new boolean terms, true and false, both of which
are values as well. Aside from that, the lambda abstraction term is also
different now; rather than simply G, the argument is nowwritten G : �. The
new symbol � ranges over the types available in the STLC: the function
type � → �′, and the newly-added Bool type. An example of a concrete
function type would be Bool→ Bool. An example of a value belonging to
this type would be (�G : Bool.G).

We can now use typing rules to define the behavior of our new terms and
types (see Appendix A for a summary of this notation):

T-True: ` CAD4 : Bool
T-False:

` 5 0;B4 : Bool
T-Var:

G : � ∈ Γ
Γ ` G : �
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T-Abs:
Γ, G : � ` t : �′

Γ ` �G : �.t : �→ �′
T-App:

Γ ` t1 : �→ �′

Γ ` t2 : �
Γ ` t1t2 : �′

The first three rules are straightforward: true and false are of type Bool,
and if G : � is in the context Γ, then G is of type � under that context.
The rule T-Abs describes typing for lambda abstractions: the abstraction
variable G : � is added to the context Γ (because the variable might appear
in the term t), and given that the term t is of type �′, then we can conclude
that a lambda abstraction of the form (�G : �.t) is of type �→ �′ (since t is
the return value of the abstraction). T-App states that a term of type �→
�′ can be applied to a term of type �, resulting in a term of type �′.

In this manner, by extending the syntax and grammar to add new terms
and types, and defining typing rules for the behavior of those terms and
types, we can extend the STLC to add new features to it. Before extending
it with OOP features, we will first consider how type inference may be
performed on the STLC developed so far.

2.3 Type Inference as Constraint Satisfaction

One common technique for performing type inference on the STLC (and
FP languages derived from STLC) is to model it as a Constraint Satisfaction
Problem. A constraint between two types � and �′ (denoted � ∼ �′) simply
states that the two types must be unified, or in other words, they should
be equal to each other. A constraint set (usually denoted �) is a list of such
constraints for a given program (where type annotations may be partially
or completely absent). A unification function is one which generates a
substitution that satisfies all constraints in � (Suidman, “Introduction to
Type Systems: Type Inference”). In other words, it finds a solution to the
constraint satisfaction problem.

For example, consider the following function written without type anno-
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tations (in a common FP language):

Listing 2: Constraint-based Inference
f x = x + x

The job of the inference algorithm is to infer the type of the variable G and
the function 5 . First, because we do not yet know the types of these terms,
we will assign type variables to them, so that G : �0 and 5 : �1. Next, we
analyze the body of the function, which consists of a single operation, G +
G. We assign this expression a type variable as well, so that (G + G) : �2.
Since 5 is a functionwhose argument is G and return value is (G + G), we can
generate the constraint �1 ∼ (�0→ �2). We know that the operator ‘+’ takes
two values of type Int, so we can generate the constraint �0 ∼ Int (in fact,
we would generate two constraints for both the left-hand and right-hand
side of the operator. However, this is a special case since the same variable
appears on both sides). We also know that the ‘+’ operator returns a value
of type Int (the arithmetic sum of the left and right hand sides), so we have
the constraint �2 ∼ Int. Altogether, we have the following constraints:

� = {�1 ∼ (�0→ �2), �0 ∼ Int, �2 ∼ Int}

To solve these, we can substitute the type Int for �0 and �2 to satisfy
all constraints. Since G : �0 and 5 : �1, we can infer that G : Int and
5 : Int→ Int.

A constraint-based inference algorithm is one which can be employed to
generate constraints in this manner and perform unification to infer types
(Krishnamurthi, Lerner, and Politz). An example is the Damas-Hindley-
Milner algorithm (Damas; Hindley; Milner), which forms the basis of most
inference algorithms used in statically typed FP languages. One important
characteristic of Damas-Hindley-Milner inference is its completeness - it
can infer the types of all terms within a given program, without any anno-
tations or hints. This is known as global or full type inference, as opposed
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to partial type inference which can only infer the types of some terms. The
other notable characteristic of Damas-Hindley-Milner inference is that it
infers the principal type, that is, the most general type that encompasses
all possible types for a given expression. Both properties are considered
desirable in any type system.
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3 Features of Object-Oriented Programming

One feature common to many OOP languages (such as Java, Scala, Type-
Script, Kotlin, etc.) is polymorphism. Polymorphism is commonly defined
as types (or entities) whose operations are applicable to values of more
than one type (Cardelli andWegner). Interestingly, this definition is broad
enough to include most of the distinguishing features of typed OOP lan-
guages, such as generic programming, subtyping and operator/function
overloading, as we will see later.

This definition, however, is too broad. Polymorphism can be further di-
vided into different forms with more precise definitions, allowing us to
better understand how they may act as barriers to type inference. In par-
ticular, three forms of polymorphism are discussed: parametric, subtype
and ad-hoc polymorphism.
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4 Parametric Polymorphism

4.1 System F

Parametric polymorphism is when a data type, such as a function, can be
written generically such that it can handle values independent of their type
(Pierce). Such types are also known as generic data types. The following
is an example of parametric polymorphism in Java:

Listing 3: Generic Programming in Java
public <T> ArrayList<T> wrap(T value) {

ArrayList<T> list = new ArrayList<T>();

list.add(value);

return list;

}

This function simply wraps a value of type T into an ArrayList and re-
turns the list. Note that the ArrayList data structure is itself a generic
data type. This demonstrates the expressiveness and power of parametric
polymorphism: functions no longer need to be bound by any one specific
type. Rather, they can be expressed for any type T. We call T a type variable.

STLC can be extended to support parametric polymorphism. STLC with
parametric polymorphism is also known as System F (Girard; Reynolds).
We have seen in the example above that parametric polymorphism is sim-
ply the introduction of a special variable that ranges over types instead of
terms. Thus, the formulation of System F can be achieved by introducing
a new form of abstraction that takes a type variable as its argument, and
returns a concrete type formed using that variable. A complete under-
standing of System F is not necessary to understand the following section
(although for completeness, the formal syntax and rules can be found in
Appendix B).
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4.2 Type Inference in System F

The concepts of reducibility and undecidability are important to under-
stand why type inference is difficult (in fact, impossible) in System F. A
problem A is reducible to B if there is a way to convert any given instance
of A to an instance of B. A problem is undecidable if there is no general
algorithm to determine the answer for a given instance of the problem.
Furthermore, if A is reducible to B, and B is undecidable, then A is also
undecidable (Hopcroft, Motwani, and Ullman).

It has been proven that, in System F, the problem of type inference is unde-
cidable. Thiswas proven byWells by showing that type inference in System
F can be reduced to another problem known as the semi-unification prob-
lem, which had already been proven to be undecidable (Kfoury, Tiuryn,
and Urzyczyn). While the proof itself is beyond the scope of this essay,
this reduction implies that global type inference is not possible in a type
system that supports parametric polymorphism. Not only that, it has also
been shown that in many cases, even partial type inference is undecidable
for System F (Boehm, “Partial polymorphic type inference is undecidable”;
“Type Inference in the Presence of Type Abstraction”).

Given the benefits and expressiveness of parametric polymorphism, most
typed OOP languages choose to give up on global type inference in favor
of this feature. Other languages, such as Haskell, allow a restricted form
of parametric polymorphismwhere type inference is still possible (Pierce).
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5 Subtype Polymorphism

5.1 Subtyping

Subtyping is a major characteristic of the OOP paradigm. Like parametric
polymorphism, it allows writing code in a more abstract manner. For
example, consider the following Java program:

Listing 4: Subtyping in Java
public class Main {

public static void main(String[] args) {

byte x = 100;

short y = 1000;

int result = add(x, y);

System.out.println(result); // outputs 1100

}

public static int add(int x, int y) {

return x + y;

}

}

Although the method add is defined for two parameters of type int, it
works for byte and short as well. This is because byte and short are both
subtypes of the supertype int. This means that both byte and short (and all
other subtypes of int) can be substituted for int without compromising
on the correctness of the program. This particular subtyping relation is
commonly known as the Liskov substitution principle (Liskov and Wing),
and is an important design principle of OOP. More generally, a type S is
a subtype of some type T if any term of S can safely be used in a context
where a term of T is expected (Pierce).
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5.2 Record Types

Subtype polymorphism is specifically important in OOP because of how
it affects the way objects and object types behave. Commonly, an object
is a “data structure encapsulating some internal state and offering access
to this state to clients via a collection of methods” (Pierce 228). To better
understand subtype polymorphism through the STLC under this context,
we first need to extend it with a datatype similar to these objects. To do so,
we will add the record type to the STLC. Records are simply a collection
of terms identified by some label. Although proper object types in more
complete programming languages are more complex and nuanced than
this, it is sufficient for our purposes.

First, the syntax for record literals and accessing fields of a record (projec-
tion):

t ::= terms:
... (previous terms)
| {l8=t8 8 ∈ 1..=} record
| t.l projection

v ::= values:
... (previous values)
| {l8=v8 8 ∈ 1..=} record value

� ::= types:
... (previous types)
| {l8:�8 8 ∈ 1..=} record type

The notation {l8=t8 8 ∈ 1..=} is used for a record with = fields, each uniquely
labeled. The remaining grammar is straightforward. An example of a
record using this syntax would be {x=true, y=false}. Relevant evalua-
tion rules can be found in Appendix C.
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The relevant typing rules for records are as follows:

T-Rcd:
for each 8 Γ ` ti : �8

Γ ` {l8=t8 8 ∈ 1..=} : {l8:�8 8 ∈ 1..=}
T-Proj:

Γ ` t1 : {l8:�8 8 ∈ 1..=}

Γ ` t1.lj : �9

The rule T-Rcd tells us that a record {l8=t8 8 ∈ 1..=} where each term of a
field t8 has some type �8 will have the type {l8:�8 8 ∈ 1..=}. For example, the
record {x=true, y=false} has two fields x and y of type Bool. The type
of this record would then be {x:Bool, y:Bool}. The rule T-Proj simply
tells us that the type of a projection will be the type of the corresponding
field.

For convenience, we will make use of let-syntax to bind terms to a name,
like so: let id = �G.G, and similarly type to bind types to a name.

With the addition of records, the benefits of subtyping in STLC become
more apparent. Consider the following function:

let f = (�A :{x:Bool}. A.x)

The function f takes a record containing the field G : Bool and returns the
value of that field. However, the following well-behaved term would be
considered invalid under the typing rules for function application (see rule
T-App in subsection 2.2):

f {x:true, y:false}

The above application fails because, according to our typing rules, the
function f can only take terms of the type {x:Bool}, while in this case it
is being applied to the type {x:Bool, y:Bool}. Clearly, the term is well-
behaved, because it only requires the argument to have a field x of type
Bool. To overcome this, we introduce subtyping in the lambda calculus.
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5.3 Rule of Subsumption

Although there is much more to the formalization of subtyping in lambda
calculi, in our case we only focus on the aspects relevant to our discussion,
namely the subsumption rule. We will assume that a record type S is
a subtype of some other record type T if it contains at least all the fields
contained in T. This is denoted as S <: T. Then, we can add the rule of
subsumption:

T-Sub:

Γ ` t : S
S <: T

Γ ` t : T

This rule simply tells us that a term of some subtype S also belongs to its
supertype T. For example, {x:true, y:false} belongs to both {x:Bool,
y:Bool} and {x:Bool}, because {x:Bool, y:Bool} <: {x:Bool}. This
solves the problem encountered in the previous section, because now the
function f can accept not only the type {x:Bool}, but also all of its subtypes.

5.4 Inference under Subtyping

Acloser look at the subsumption rule also gives us an idea ofwhy inference
may be problematic under the presence of subtyping: the term t now
belongs to not just the type S, but also all subtypes of S. In other words,
the same term belongs to multiple types.

Let us consider the function f defined earlier, but this time without any
type annotations:

let f = (�A.A.x)

Now, due to the rule of subsumption, the variable A could belong to any
of an infinite number of types. Given this program, without any type
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annotations from the programmer, the most we can infer is that f is a
function type that takes some record type as its argument, which contains
a field x. Needless to say, this is not very practical or useful.

The kind of subtyping discussed so far falls largely under the notion of
structural subtyping, where the subtype relation between two types is based
entirely on their structure (for example, the type and number of fields in
two record types). A different notion is that of nominal subtyping, where a
subtype relation may only exist if the programmer explicitly declares one
so (Pierce). This is a common feature in many mainstram OOP languages,
and usually includes special syntax as well, for example the implements
keyword in Java. Under nominal subtyping, inference becomes even more
difficult. Consider the following example:

type A = {x:Bool}

type B = {x:Bool}

let f = (�A.A.x)

In this example, even though the types A and B are identical, they are
seen as entirely different types under nominal subtyping, because we did
not declare any subtype relation between them. Thus, even if we were
able to infer that A is of type {x:Bool}, it would be impossible to deter-
mine whether it is of type A or B without explicit annotations from the
programmer.
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6 Ad-Hoc Polymorphism

Ad-Hoc polymorphism allows overloading of functions and operators to
different types (Pierce). A common example would be overloading the ‘+’
operator to work on both integers (as an arithmetic operator) as well as
String types (as a concatenation operator).

The issues this poses to type inference are straightforward. Consider the
function from Listing 2:

f x = x + x

Assuming the ‘+’ operator is overloaded for both integers and Strings, both
of the following lines are valid:

f 1 // == 2

f "hi" // == "hihi"

The function f can be applied to both integers and strings. In other
words, the variable x can now belong to two different types depending on
the argument provided. This is similar to the problem faced with subtype
polymorphism, making type inference difficult.

Ad-hoc polymorphism is another feature popular with OOP languages,
but can also be found in some strongly typed functional programming
languages, such as Haskell. These languages introduce more complex
constructs such as typeclasses (O’Sullivan, Stewart, and Goerzen) that al-
low overloading of functions without sacrificing type inference. However,
typeclasses are not very suitable for type systems supporting the OOP
paradigm.
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7 Alternative Techniques

Despite these challenges, there are several techniques for performing (par-
tial) type inference in OOP languages. One increasingly common tech-
nique is local type inference (Pierce and Turner). Compared to the full type
inference of Damas-Hindley-Milner, local type inference is very much lim-
ited. This technique recovers type information from adjacent nodes of the
abstract syntax tree (the internal representation of a program, as a tree
structure) after the parsing stage of the compiler (Pierce), when possible.
This allows it to perform simple inferences, such as in variable declarations.
Numerous modern OOP languages, such as Java, Scala, Visual Basic, C#
etc. use a form of local type inference. For example, Java introduced the
var keyword which enables local type inference in variable declarations,
so that code such as the following:

HashMap<String, String> map = new HashMap<String, String>();

Can be shortened to:

var map = new HashMap<String, String>();

In such cases, the inference engine can observe the type of the expression
on the right-hand side of the assignment operator (provided the expres-
sion is simple enough) and assign it to the variable on the left-hand side,
without requiring any annotations for it. Even though local type inference
lacks completeness and the principal type property, it can still provide
surprisingly sufficient inference in many cases, and reduce verbosity.

Aside from this, othermore powerful techniques have also beendeveloped.
For example, bidirectional type inference (Pierce and Turner), implemented in
the Swift programming language (Suter). In this technique, type informa-
tion is propagated further in both the backwards and forwards direction
from the nodes of a syntax tree, allowing formore powerful type inference.
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Algebraic subtyping (Dolan) is another powerful type inference technique
that allows inference under the presence of subtyping. Although type in-
ference for simple subtypes had been possible to some extent (Mitchell),
algebraic subtyping is notable in that it extends Damas-Hindley-Milner in-
ference to provide full support for subtyping, while retaining the principal
type property (Parreaux).

Although a detailed discussion of these techniques is beyond the scope
of this essay, they highlight the possibilities of type inference in OOP
languages.
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8 Conclusion

In conclusion, global type inference for statically typed OOP languages
supporting parametric polymorphism is not possible, while global type
inference for OOP languages supporting ad-hoc or subtype polymorphism
is possible but complex. However, simple partial type inference for typed
polymorphic OOP languages is still possible to a large extent, through
techniques such as local type inference and its variants. In most cases, this
partial type inference is sufficient to a large degree.

In fact, it is important to note that while type inference has many bene-
fits in terms of programming language design, there are also cases where
(global) type inference may not be desirable. Even in languages that do
support global type inference, it is often discouraged in practical settings.
This is due to the fact that type annotations can also serve the purpose of
documenting code, and making it easier to understand. Moreover, type
annotations also aid the compiler in analyzing the code and providing
more useful and readable error messages (as opposed to error messages
containing obscure type variables that are not very helpful to the program-
mer) (Pierce and Turner). In these cases, type annotations are encouraged,
while type inference is relied upon only when code becomes verbose or
unreadable. This situation is ideal for partial type inference techniques,
making them quite useful and practical.
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9 Appendices

9.1 Appendix A: Notation

Backus-Naur Form

BNF is a commonly used notation for expressing the syntax of program-
ming languages (called a grammar). Essentially, it is a set of rules that can
be used to generate strings that follow the syntax defined by the grammar
(or in other words, syntactically valid strings) (Nystrom). BNF consists of:

• Terminal symbols, which are literal values of the string generated.

• Non-terminal symbols, which are used to reference other rules of the
grammar.

• Productions, which are the rules themselves. Each production is of
the form !�( ::= '�(;, where the !�( is a non-terminal symbol, and
the '�( is a sequence of either terminal or non-terminal symbols.

For example, the following could be a BNF grammar defining the signature
for methods in a Java-like programming language:

Sig ::= Visibility Access Type Name ‘(’ Params ‘);’ ;

Visibility ::= ‘public’ | ‘protected’ | ‘private’ ;

Access ::= ‘static’ | ‘’ ;

Type ::= ‘boolean’ | ‘byte’ | ‘char’ | ‘int’ | ‘float’ ;

Name ::= ‘A’ | ... | ‘Z’ | ‘a’ | ... | ‘z’ | Name ;

Params ::= Name | Name ‘,’ Params ;

The pipe symbol (‘|’), read as ‘or’, separates the sequences of a production.
We are allowed to choose whichever we want. Terminal symbols are
enclosed within quotes to differentiate them from non-terminal symbols.
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Note that this change is for simplicity only; in the grammar for �-calculus
(and use of this notation elsewhere in this essay), quotes do not enclose
non-terminal symbols.

To generate a string from this grammar, we start from the rule Sig. It
tells us to go to the rule Visibility, which has three non-terminals. We
choose, for example, the first one, ‘public’. Now our string is: public
Access Type Name ‘(’ Params ‘);’. We then look at Access, which
is either ‘static’ or the empty string. Choosing the first one again, we
have: public static Type Name ‘(’ Params ‘);’. Similarly for Type,
if we choose ‘boolean’, we then have: public static boolean Name ‘(’
Params ‘);’. For Name, notice that it contains the entire english alphabet,
and then recursively references itself. This allows us to generate any se-
quence of letters to form a name. We can choose, say, ‘isEqual’. We thus
have: public static boolean isEqual ‘(’ Params ‘);’. For Params,
we can have either one Name, or a recursively generated sequence of Names
separated by a comma, for example ‘a, b’. We then have: public static
boolean isEqual ‘(’ a, b ‘);’. Putting it together, we get: public
static boolean isEqual(a, b);.

Inference Rules

In logic, inference rules are a form of syntactic expressions which take a
number of premises, written above a horizontal bar, and return a conclusion
based on those premises (Suidman, “Introduction to Type Systems: Simply
Typed Lambda Calculus”). The prime example is the modus ponens, which
takes two premises, ? and ? =⇒ @ (if ? then @), to return the conclusion,
@:

modus ponens:

?
? =⇒ @

@
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This rule can be read as “given ? and ? =⇒ @, then we can conclude @”. If
there are no premises given above the horizontal bar, then the conclusion
under the bar is considered an axiom, that is, it is considered to always
hold.

Turnstile

The turnstile (‘`’) is also a feature from a logic system (namely sequent
calculus) which is used to separate assumptions (appearing on the left)
from propositions (appearing on the right). It means that the proposition
on the right can be derived or deduced from the assumptions on the left.
The symbol ` can be read as ‘yields’ or ‘entails’. Multiple assumptionsmay
appear on the left side, but only one proposition can appear on the right
(Kleene). As an example: ?, ? =⇒ @ ` @ reads ‘? and ? =⇒ @ yields @’,
which is valid since @ can be directly derived from the assumptions.

Typing Context

A typing context, usually denoted Γ, is a set containing the declarations of
variables and their types. For example, Γ = {G : Int, 5 : Int→ Bool} is an
example of a typing context (Pierce).

Typing Judgments and Typing Rules

A typing judgment is essentially an assertion telling us the type of an
expression once it is fully evaluated (Pierce). For example, 1 + 1 : Int is a
typing judgment telling us that the expression 1 + 1, once evaluated, has
the type Int.

However, we often come across expressions such as G + 1, where we have
a variable whose type we do not know. These expressions have to be
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considered with respect to some typing context which can tell us the types
of the variables appearing in it.

We can define the following inference rule to say that if the variable G and
its type � is in the context, then we are allowed to conclude that in an
expression containing the variable G, the type of G is �:

G : � ∈ Γ
Γ ` G : �

Inference rules such as this which combine typing judgments are com-
monly referred to as typing rules.

Going back to our example of the expression G + 1, if we have the context
Γ = {G : Int}, then we can assert the type of G + 1 with the judgment
Γ ` G + 1 : Int, since Γ now contains the type of G.

In thismanner, by combining typing judgmentswith the turnstile notation,
we can write the judgment Γ ` 4 : � to say that, under the assumption that
Γ contains the types of all variables occurring in 4, we can assert that 4,
once evaluated, has the type type �.

9.2 Appendix B: System F Rules

To extend �-calculus with polymorphism, we make two new additions:
type variables, which are similar to normal variables except that they
range over all types rather than values, and polymorphic types, which are
types that contain type variables (Sørensen and Urzyczyin).
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These additions require new syntax for types:

� ::= types:
X type variable
| ∀X.� polymorphic type
| �→ �′ function type
| Bool boolean type

Listing 3 already gives an example of a type variable. An example of
a polymorphic type would be ∀X.X → X. A function with such a type
would accept a value of any type, and return a value of the same type
(this is similar in nature to the identity function - in fact, it turns out that
any function with the type ∀X.X → X will be equivalent to the identity
function!).

We also update the syntax for terms in order to allow type abstraction and
application:

t ::= terms:
... (previous terms)
| ΛX.t type abstraction
| t � type application

Type abstractions are again similar to normal abstractions, but with type
variables instead of normal variables - the term ΛX.t introduces a new
type variable X, abstracted over the term t (similar to the type variable T
abstracted over the method wrap in Listing 3). We can now write a generic
identity function using type abstractions:

let id = ΛX.�G : X.G

This is equivalent to the following Java program:
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Listing 5: Generic Identity Function in Java
public <T> T identity(T x) {

return x;

}

This type abstraction can then be applied to instantiate the polymorphic
type with a concrete type. For example, ‘id Int’ applies the type Int to
our generic id function. The type variable is then replacedwith the specific
type, in this case giving us id : Int → Int. In Java, this is analogous
to supplying our generic method with a specific type when calling it:

Listing 6: Generic Identity Function in Java
identity<int>(1); // The type variable T is replaced with ‘int’.

The typing rules for type abstraction and application are as follows:

Ty-TyAbs:
Γ ` t : �

Γ ` ΛX.t : ∀X.�
Ty-TyApp:

Γ ` t : ∀X.�
Γ ` t �′ : [X ↦→ �′]�

The first rule describes type abstraction: ΛX.t has type∀X.� if t has type �.
The second describes type application: if a term t has the type ∀X.�, then
the type application t �′ has the type [X ↦→ �′]�, that is, the type obtained
when �′ is substituted for the type variable X.

These rules form the basis of System F, and outline how it is equivalent to
generic programming patterns in mainstream programming languages.
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9.3 Appendix C: Subtyping for Record Types

Evaluation Rules for Records

The relevant evaluation rules for records are as follows:

E-Proj:
t1 −→ t’1
t1.l −→ t’1.l

E-ProjRcd: {l8=v8 8 ∈ 1..=}.lj −→ v9

E-Proj tells us to fully evaluate a record term before applying projection,
while E-ProjRcd tells us that a projection of some label l9 on a record
evaluates to the corresponding value v9 of the field identified by the label.
For example, {x:true}.x evaluates to true.

Basic Subtyping Rules

The following transitivity and reflexivity rules can be derived straightfor-
wardly from the Liskov substitution principle (that a supertype may be
safely substituted with its subtype in any context):

S-Trans:
S <: T T <: U

S <: U
S-Refl: S <: S
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