

 1 / 42

Adapting Autoencoder neural networks for image compression

To what extent is the feasibility of

adapting Autoencoder neural networks

for image compression?
Word count: 3,992

Anderson Addo
CS EE World
https://cseeworld.wixsite.com/home
27/34 (A)
May 2025

Submitter info:
This essay was quite rushed, as I changed my RQ one month before the EE deadline lmao. Really important to make sure that your RQ will be something you can handle. Contact me at grieferpig [at] 163 [dot] com, and spoiler alert, pony inside.

 2 / 42

Table of Contents

Table of Contents ... 2

Introduction .. 3

Background information .. 4

Convolutional Neural Network (CNN) ... 4

Autoencoder ... 5

Methodology ... 6

Proposed model structure ... 8

Datasets .. 8

Evaluation Metrics ... 9

Mean-squared error (MSE)... 9

Structural Similarity Index (SSIM) .. 10

Peak Signal-to-Noise Ratio (PSNR) ... 10

Compression ratio ... 10

Experiment Procedure ... 11

Results and Analysis .. 12

Mass testing .. 12

Extreme conditions ... 16

Specialized Dataset... 18

Selected Models .. 19

Optimizations ... 21

Residual connections .. 21

Denoising .. 24

Quantization .. 26

Evaluation .. 27

Quantitative Evaluation ... 27

Qualitative Evaluation .. 29

Decompression latency ... 31

Conclusion .. 32

Bibliography ... 34

Appendix ... 37

A) Autoencoder Model Implementation With Residual Connection 37

B) Homogeneous Dataset collected .. 41

C) Test results of the models on different client devices .. 41

D) Complete experiment code repository .. 42

 3 / 42

Introduction

As Internet and smartphones become widespread, the demand for data compression

is arising since a representation of digital images requires large amounts of data

(Guojun, 1992). JPEG is a common traditional algorithm for compressing

photographs and other images online (Murooj et al., 2024). However, trade-offs

between file size and visual quality are often made for efficient data transmission,

especially with increasing resolution of modern displays and aesthetic standards

(Shayan et al., 2024). In response to these challenges, Autoencoder provides a

promising alternative for compressing images into latent representations with high

performance (Umberto, 2022).

Autoencoders, which consist of encoder and decoder, compress and reconstruct

input data into a low-dimensional latent space. (Dor et al., 2020). Their capability to

compress data into essential features make them as possible candidates for image

compression, which aims to preserve visual quality while minimizing data size.

Traditional dimensionality reduction methods, such as PCA (Principal Component

Analysis), while could achieve comparable accuracy to autoencoders at sufficiently

large dimensionality (Quentin and Daniel, 2021), are based on linear transformations

and cannot effectively capture non-linear relationships in the data (Abhishek, 2023),

which leads to suboptimal performance on images (Adam, 2000).

 4 / 42

Modern computational devices focus on improving power and processing efficiency

for data-drive parallel computing. Most modern processors contain an NPU (Neural

Processing unit) that can offload AI-related tasks from CPU, e.g. speech recognition

and background blurring, with low power and comparable performance. (Techradar,

2024). Implementing a compression method that is inherently accelerable by NPU

would allow for parallel decompression of images with lower energy consumption,

increasing the throughput during batch decompression scenarios.

This paper proposes using Autoencoder models to encode and decode images for

compression. To investigate the influential factors of efficiency, various Autoencoder

models were programmed with different number of encoder/decoder layers, size of

latent dimensions, and size of image set.

Background information

Convolutional Neural Network (CNN)

CNNs are a type of deep learning neural networks designed to process data in a grid

fashion like images (LeCun et al., 2015). Their ability to learn spatial structures

makes it widely used in computer vision. CNNs are composed of convolutional layers

that learns a low-dimensional filter and apply them to the input in order to extract

feature map that represents a pattern within an area, such as sharp edges and

texture (Krizhevsky, 2012). To apply such filter, as seen in figure 1, the kernel “slides”

 5 / 42

around the input grid starting from the left and multiply the kernel with the area

underneath (image patch). The element-wise product of the two matrixes determines

the value of the output image. By combining multiple kernels, a CNN is able to

extract intricate features to be used for identification or embedding (transform an

image to a latent vector that describes the features of such image) tasks.

Fig. 1. A visualization of CNN kernel sliding mechanism (Elyasi, 2020)

Autoencoder

Autoencoders use unsupervised learning to learn lower-dimensional representation

of unlabeled data (Wikipedia, 2024). They consist of two functions: encoder 𝐸(𝑥) and

decoder 𝐷(𝑥). The encoder takes an image 𝑥 as the input, passes through several

layers of dense layers, with the goal of learning a compact latent representation 𝑐

(known as the bottleneck). The decoder, which shares a similar but reversed

structure with the encoder, tries to recreate the image 𝑥′ from the latent

representation. To compress the input data, each layer is designed to progressively

reduce the dimensions of the data, to capture the most prominent features while

minimizing the significances of noises (Hinton and Salakhutdinov, 2006). Several

 6 / 42

variations of autoencoders have been introduced, e.g., Denoising Autoencoder

(Vincent et al., 2008), Variational Autoencoder (Kingma and Welling, 2013), and

Convolutional Autoencoder (Masci et al., 2011). The Convolutional Autoencoder

variant is used for its superior ability to maintain the spatial arrangement of the

image data and drastically fewer trainable parameters that make them less prone to

overfitting and more scalable for large datasets (Masci et al., 2011).

 Fig. 2. A visual demonstration of the structure of an Autoencoder network (Lucas, 2020)

Methodology

The primary experimental data is the main source of data in this paper. The scarcity

of secondary data sources on the topic of this paper led me to an experimental

methodology, where independent variables are flexible and easily controlled. To

streamline the experiment process, the Autoencoder models are defined with four

parameters: input image dimension (img_size), encoder/decoder layer amount

 7 / 42

(num_layers), latent vector dimension (latent_dim), and image set size

(img_set_size) (appendix A, adapted from (Hasan, 2024)). To test the model’s

scalability, four model sizes are defined by the following specification. These models

are chosen due to their balance on compression ratio and reconstruction quality (see

Results and Analysis). For ease of identification, the model’s hyperparameters will

be written in (num_layers, img_set_size, latent_dim).

Name img_size num_layers img_set_size latent_dim

small 256 2 64 16

base 256 2 256 32

large 256 2 1024 64

xlarge 256 2 4096 128

Table 1: Hyperparameters of the defined models

The loss value, average MSE (mean-squared error), PSNR and SSIM value are

recorded after each run, with 4 example images selected randomly from the dataset

to evaluate its performance at reconstructing image through qualitative analysis. To

further enhance the reconstruction quality and compression ratio, optimizations will

be applied, including adding residual connections, dynamic quantization and

appending a denoiser model. Due to the lossy nature of the autoencoder model

introduced by the difficulty to fully converge to complex input, the reconstruction

quality will be compared with JPEG, a commonly used lossy image compression

format that is efficient at compressing photographic images used in the dataset

(Wikipedia, 2024).

A limitation of this methodology is the dataset’s high quality images, meaning that for

more commercial applications, such as image backup services, the datasets are not

representative of these use cases, as blurry and poorly taken images are abundant.

 8 / 42

The demanding requirement of training hardware also restricts training larger models,

hindering the potential performance of this network structure at larger scale.

Proposed model structure

The proposed model structure is dynamically determined based on three

hyperparameters: image_size (dimension of input images, defaults to 256x256),

num_layers (number of convolutional layers), latent_dim (size of the bottleneck

vector). Later variations add residual connections (skip connections between layers)

and a denoiser model, to help improve the reconstruction quality. These changes are

marked as red and blue on the following figure. Below is an architecture

demonstration of the small model.

Fig. 3: Overview structure of the model structure, using the small model as example

Datasets

Each of the models was trained on a randomly sampled subset mini_imagenet

(Google, 2024), a minimal version of the ImageNet dataset developed by Google

DeepMind. The dataset contains 60000 images of 100 categories, 600 images each.

 9 / 42

Images are resized to 256x256 to balance between computational load and visual

clarity. Each image is converted to RGB format and normalized to a float32 value

between 0 and 1.

Fig. 4: Sample images from the dataset

Evaluation Metrics

Mean-squared error (MSE)

Mean-squared error is a measure of relative deviation between two data. It

measures the average distance between two data samples using the following

formula. (Wikipedia, 2024) A high MSE value indicates errors, while an MSE value of

0 indicates perfect reconstruction.

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − 𝑌𝑖

′)2

𝑛

𝑖=1

Where 𝑛 is the number of samples, 𝑌 is the observed value set and 𝑌′ is the

expected value set. As it is a relative indicator about the expected value, the value

represents the variance and bias of the observed (i.e. reconstructed images)

compared to the ground truth (original images). Thus, this metric is indicative of the

output image’s noise level (variance) and color degradation (bias). However, as

humans are not sensitive to mean-squared error in images (Wikipedia, 2024), this

 10 / 42

metric is used to measure unnoticeable detail loss between images.

Structural Similarity Index (SSIM)

SSIM is a perceptual metric that measures degradation between two images. It

shows a better correlation with human perception of quality than pixel-based metrics

like MSE (Wang et al., 2004). It uses the original image as reference and considers

luminance, contrast and structure of the image to determine perceived errors

(Wikipedia, 2024). The formula of SSIM is given as:

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(μx
2 + μy

2 + C1)(σ𝑥
2 + σ𝑦

2 + 𝑐2)

Peak Signal-to-Noise Ratio (PSNR)

PSNR measures the ratio between the maximum boundary of a signal, in this case,

the flattened image pixels, and the level of noise. A higher value indicates a better

quality of the reconstructed image. The formula is given as:

𝑃𝑆𝑁𝑅 = 10 ⋅ 𝑙𝑜𝑔10 (
𝐼𝑚𝑎𝑥

2

𝑀𝑆𝐸
)

Where 𝐼𝑚𝑎𝑥 is the maximum value of a pixel (1.0 normalized). This metric is used to

measure the noise level of output image that is evident at small latent dimensions in

this experiment.

Compression ratio

Compression ratio measures the reduction in size of the compressed data compared

 11 / 42

to the uncompressed data. Traditionally, compression ratio is defined as

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
1

n
∑

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑆𝑖𝑧𝑒

𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑆𝑖𝑧𝑒

𝑛

𝑖=1

Where 𝑛 is the number of images. A smaller ratio indicates better compression

efficiency. However, since decompression of the proposed model requires the

decoder weights (containing all images) and a latent representation, the compressed

size will be calculated as an average size per image as

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =

𝑀𝑜𝑑𝑒𝑙 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 𝑠𝑖𝑧𝑒
𝑛 + 𝐿𝑎𝑡𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 𝑝𝑒𝑟 𝑖𝑚𝑎𝑔𝑒

𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

In this experiment, since the model is trained on 256 × 256 images using rgb888

format, where each pixel takes 3 bytes, the uncompressed size is

𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒 = 256 × 256 × 3 = 196608 𝑏𝑦𝑡𝑒𝑠

Experiment Procedure

The images are shuffled and resized to 256x256 and normalized to float32 of range

[0,1]. As the goal is to overfit the models, the dataset is not divided into train,

validation, or test subsets. Mixed-precision training (using 16-bits float instead of 32-

bits for certain weights) is applied to accelerate training and reduce memory usage

while keeping comparable results to normal training (Carilli, 2024). When training,

the whole encoder-decoder model is trained with input of the images and expected

output of the images. The embeddings of respective images and the decoder

network is then separated from the model to test decompression efficiency based on

MSE, PSNR, SSIM, and compression ratio.

 12 / 42

To determine whether the model achieves convergence to stop training, in every 100

epochs, a linear regression will be performed on the past 100 loss values, and the

SSIM value on last checkpoint will be considered. If the slope of the linear regression

function is below 1 × 106, and the difference between current and last SSIM value is

smaller than 1 × 103 , then the model is considered converge and the training

process stops.

When training the denoiser network, however, a general model that applies to model

of different parameters is expected. To condition the model specifically on

reconstruction noise, pairs of clean and reconstructed images from base and large

model are inferenced and saved locally. The saved dataset is then separated into

train, validation and test subsets with percentage 80%, 10%, 10% respectively. The

model trains on train subset and validate on validation subset every epoch. After

training, test subset is used to test the performance of the denoise model on unseen

images. The same metrics except compression ratio are used to evaluate the

denoise model.

Results and Analysis

Mass testing

To determine an optimized state of the model, tests are conducted from any

combination of

num_layers = [1,2,3,4]

 13 / 42

latent_dim = [16,32,64]

img_set_size = [32,64,128,256]

Increasing the model depth help the model to learn more complex features, as the

added filters in convolutional layers can learn more intricate features, resulting in

faster convergence, as shown in the training loss curve (Fig. 5a). However, due to

vanishing gradient problem, where previous layers failed to adjust their weight

effectively through backpropagation, the reconstruction quality degrades for deeper

models. This results in suboptimal reconstruction quality, as shown Fig. 5b and 5c.

Fig. 5a, 5b, 5c: Training Loss, PSNR and SSIM curve at different num_layers

As shown in Fig. 6a, models tend to converge faster on larger datasets than small

 14 / 42

datasets, due to their lower diversity in data. This allows the model to reuse common

filters in the convolutional layers for common objects, resulting in more efficient

feature extraction. However, as the amount of information the encoder passed to the

decoder is constrained by the size of the bottleneck, the model struggles to describe

the difference between images in the larger dataset, resulting in worse PSNR and

SSIM values (Fig. 6b and 6c).

 15 / 42

Fig. 6a, 6b, 6c: Training Loss, PSNR and SSIM curve at different img_set_size

Larger latent_dim solves the problem of insufficient features above, resulting in

faster model convergence and superior reconstruction quality (Fig. 7a, 7b, 7c).

However, increasing latent_dim means increasing the output size of the linear layer,

resulting in larger checkpoint file size.

 16 / 42

Fig. 7a, 7b, 7c: Training Loss, PSNR and SSIM curve at different latent_dim

Extreme conditions

Two extreme conditions, img_set_size > 4096 and epoch = 99999 are tested to

evaluate the model’s theoretical scalability and reconstruction quality. Fig. 8b and 8c

shows that for extremely large img_set_size, although many common features

exist in dataset, the bottleneck is too small to pass through any significant difference,

resulting in a noisy reconstruction image. The larger the dataset is, the more the

model’s reconstruction quality fluctuates at early stages of training. However, the

loss stabilizes at around 1000 epochs, indicates the model has reached its capacity

limitation. Thus, it is necessary to increase latent_dim as img_set_size

 17 / 42

increases.

Fig. 8a, 8b, 8c: Training Loss, PSNR and SSIM curve at extreme

Due to insufficient computational power, only the small model is tested with

 18 / 42

epoch= 99999 . This model demonstrates the best reconstruction quality in this

experiment (Fig. 9), with PSNR=42.99 and SSIM=0.9880, approximately equal to

JPEG algorithm at 90% quality and visually indistinguishable from its uncompressed

counterpart. The cost is a 5733% increase in training time (4.33hr vs 4.5min), which

makes it impractical for actual use. For this reason, the convergence detection

algorithm in “Experiment Procedure” is established to balance training time and

reconstruction quality.

Fig. 9: Reconstructions from the epoch=99999 model

Specialized Dataset

Training on a specialized dataset is also tested. Specialized datasets refer to

datasets that are homogeneous (containing data that is similar to each other). In this

case, the small and base model is trained on 64 cartoon drawings of a character

(Appendix. B), with the following results:

 19 / 42

Fig. 10: Sample outputs from small and base model that is trained on a homogenous dataset

While in theory, a homogeneous dataset will result in easier training as the variance

is small, training on such dataset results in a significant reconstruction quality

degradation, as shown in a 17% decrease in SSIM value and significant visible noise,

compared to non-specialized counterparts. The variance for the selected dataset

may be too small for the model to overfit to certain small features in training data,

resulting in reconstruction noise. Hence, using a heterogeneous dataset will yield

best results for training this model.

Selected Models

Considering factors above, the four model categories are chosen for their balance on

convergence speed, reconstruction quality, and representation of scalability. As

shown in Fig. 11c, all the models achieved a similar SSIM score of around 0.8,

indicating the model’s scalability. However, when inspecting visually (Fig. 12), the

reconstructed image suffers from reconstruction noise, color degradation, and loss of

detail. This is due to underfitting caused by vanishing gradient, that the model fails to

 20 / 42

capture the structural and chromatic differences between images, leading to an

average-out reconstruction.

 21 / 42

Fig. 11a, 11b, 11c: Training Loss, PSNR and SSIM curve at different model size

Fig. 12: visible noise, color degradation and loss of detail

Optimizations

Residual connections

Residual connections, introduced originally in ResNet (He et al., 2015), address

challenges like vanishing gradients in deep networks. They work by allowing the

input of a layer to bypass in-between layers and be added directly to the output,

 22 / 42

creating shortcuts for backpropagation that ensure substantial gradients in early

layers. Suppose 𝑥 is the input of a neural network layer and 𝐻(𝑥) is the intended

behavior, the residual network restructures the network to learn a residual function

𝐹(𝑥) so that

𝐹(𝑥) = 𝐻(𝑥) − 𝑥

Hence, the original function becomes

𝐻(𝑥) = 𝐹(𝑥) + 𝑥

This allows the network to focus on learning the difference between inputs and

outputs rather than completely transforming the input. This helps latter layers to gain

understanding of outputs from previous layers, which provides structural/detail

information that helps to recreate the image. This also solves the vanishing gradient

problem, allowing gradients to flow directly from the output back to earlier layers,

enhancing the stability of learning.

As shown in Fig. 13b and 13c, the new models show improved PSNR and SSIM, e.g.

large model’s SSIM value increases from 0.8021 to 0.9224 and a speedup in

convergence, as shown by the loss curves. Interestingly, unlike older models that

achieve different PSNR and SSIM values, the newer models all achieved a SSIM

of 0.91 ± 0.01, indicating better scalability, except for the xlarge model that achieved

a SSIM of 0.86, presumably is still underfit based on the trend of PSNR and SSIM

curve. Visually, the new models show no color degradation or blurry details, albeit

with slightly reconstruction noise (Fig. 14). Since the dimension of input and output

stays same after residual connection, the models’ size and therefore compression

 23 / 42

ratio does not change. Hence, incorporating residual connections significantly

benefits the model in terms of reconstruction quality.

 24 / 42

Fig. 13a, 13b, 13c: Training Loss, PSNR and SSIM curve after implementing residual connections

Fig. 14: Comparison of model with and without residual connections

Denoising

A more efficient way to reduce noise in reconstructed images is to apply a denoising

network after reconstruction. Denoiser are a type of algorithm that removes noise

from input images to increase color coherence and sharpness (Kim). Considering the

client-side application of this model, the denoiser model should be as lightweight and

efficient as possible. Due to this, the model proposed in “An efficient lightweight

network for image denoising using progressive residual and convolutional attention

 25 / 42

feature fusion” (Wang et al., 2024) is selected for its small model size (< 1 M

parameters) and state-of-the-art performance on denoising images. As shown below,

the noisy image is first passed through a convolution layer to extract basic features,

then uses three dense and convolution layers to progressively extract deeper

features. The residual connection ensures that both shallow and deep features are

passed onto the next layers. The CAFFM module employs channel attention

mechanism, shown in Fig. 16. Since not all channels are equally important, the

channel attention mechanism generates an attention weights map that indicates the

importance of certain features, allowing the network to selectively focus on important

features.

Fig. 15: Model structure of the denoiser model

Fig. 16: Structure of CAFFM module

 26 / 42

Training this denoiser model involves preparing pairs of clean and noisy

(reconstructed) images. A total of 1280 pairs of images from the base and large

models are gathered and trained on the denoiser model for 100 epochs, achieving a

0.00252 loss on train dataset and 0.00246 loss on validation dataset. Four results

randomly selected from the test dataset are shown in Fig. 17. The denoiser model

effectively reduces noise where areas of solid color exist (left), but when

encountering complex textures, the model failed to reconstruct details due to

insufficient information caused by the noise (right). Nonetheless, appending a

denoiser network results in a slight increase in PSNR and SSIM, e.g. the small

model increases its SSIM value from 0.9343 to 0.9562 , while the xlarge model

increases from 0.8875 to 0.9249

Fig. 17: Comparison of reconstructed (noisy), denoised and original (clean) image

Quantization

Quantization is a memory optimization technique that significantly reduces memory

requirements, at a cost of slightly decreased accuracy. In theory, quantizing the

model to int8 (8-bits integers) should reduce the model size by 4x, because the

weights can be represent using
1

4
 bits compared to the original format. However,

 27 / 42

since ConvTranspose2D layers do not support quantization in PyTorch, the actual

size reduction rate for my model ranges from 3.33 (small) to 3.89 (xlarge), since the

larger latent_dim, the larger proportion the quantizable linear layer is in the model

file.

Evaluation

Quantitative Evaluation

The model is benchmarked against JPEG to test its performance against traditional

compression methods. The performance of JPEG is measured by its reconstruction

quality (indicated by PSNR and SSIM) and compression ratio. To factor both PSNR

and SSIM into account, a reconstruction quality score is defined as follows:

𝑄 = 𝛼 ×
1

𝑛
∑ (

𝑃𝑆𝑁𝑅𝑖 − min(𝑃𝑆𝑁𝑅𝑎𝑙𝑙)

𝑚𝑎𝑥(𝑃𝑆𝑁𝑅𝑎𝑙𝑙) − min (𝑃𝑆𝑁𝑅𝑎𝑙𝑙)
)

𝑛

𝑖=1

+ (1 − 𝛼) ×
1

𝑛
∑ 𝑆𝑆𝐼𝑀𝑖

𝑛

𝑖=1

Where 𝛼 is a weight factor controlling the importance of PSNR and SSIM scores. To

consider both PSNR and SSIM equally, 𝛼 = 0.5 is used for balance both PSNR and

SSIM with equal importance.

Since JPEG will output different file sizes depending on the complexity of the image,

a set of 25 samples are randomly selected from the dataset and resized to 256 ×

256. Each sample is tested against 10 compression qualities, ranging [10%, 100%].

The average of reconstruction quality and compression ratio is calculated for each

tested compression quality and plot as a curve. Each model size is evaluated with

and without quantization and denoising on all training datasets. The comparison

 28 / 42

between JPEG and the models are shown in the graph below.

Fig. 18: Comparison between the compression ratio and reconstruction quality between proposed

model and JPEG algorithms

It is evident that JPEG outperforms every autoencoder model in terms of

reconstruction quality, achieving almost lossless compression (𝑄 > 0.99) with a

compression ratio of 0.19. For models that are not quantized and with small datasets,

e.g. the small model has a compression ratio is 1.43, indicating a bigger per-image

file size than storing the raw image directly. However, by applying quantization to the

model, the compression ratio for the small model decreases to 0.43, with only 30%

the size compared to the original model file. In terms of reconstruction quality, the

SSIM decreases from 0.934 to 0.932, a 0.2% decrease that is negligible in human

perception. Hence, quantization can significantly reduce the model’s size with

minimal impact on performance.

Even on untrained data, the denoiser model effectively increases SSIM and PSNR

values. For example, on the xlarge model, the SSIM value is increased from 0.8875

 29 / 42

to 0.9249, a 4% improvement that makes it visually on par with non-denoised large

models. Hence, the general denoising model enhances the quality of reconstructed

images without increasing compression rate.

The model approaches JPEG performance at large scale. It is hypothesized that with

a sufficiently large model scale, this model can outperform JPEG algorithm at the

lowest quality. However, even with a low quality parameter (20%) the JPEG

algorithm produces an image with SSIM of 0.899, indicating that it is not significantly

noticeable in human perception.

Qualitative Evaluation

The models that are the most optimal (quantized and denoised) are compared with

JPEG algorithms with a quality parameter of 30%. Sixty-four samples were randomly

chosen from each model, with a total of 256 images. A website (Fig. 19) is made to

allow users to select the image with the most resemblance to the original image, and

four users who have never seen the reconstructed images of the models are chosen

to conduct this evaluation. The wins for each model and the JPEG algorithm are

recorded, as shown below (Fig. 20)

 30 / 42

Fig. 19: Website used for algorithm voting

Fig. 20: Comparison of JPEG and Algorithm wins across different models

This result is similar to the qualitative analysis, where the small model outperforms

JPEG at 30% quality on reconstruction quality, while xlarge model performs worse.

This, again, shows the model’s current incompetence to reach both comparable

reconstruction quality and compression rate as the JPEG algorithm does.

 31 / 42

Decompression latency

We define the decompression latency as the average time to decompress an image.

To test this, the quantized and unquantized model are exported into ONNX (Open

Neural Network Exchange) format and a Rust program is written to test the average

per-image latency of decompressing using JPEG and the models into the memory.

The test program is ran on a variety of client devices with different specifications.

(Appendix. C)

Fig. 21a, 21b: Per-image Loading and Decompressing time for JPEG and proposed models

 32 / 42

As shown on Fig. 21b, unlike in JPEG algorithm where minimal setup is required,

decompression latency is high as all the weights are loaded before use. Quantized

model loads faster due to their smaller file size and thus less demanding I/O. In

terms of inference latency, smaller models have an advantage against larger models

due to fewer outputs in linear layer to calculate, e.g. the small model’s

decompressing time is 20% faster than the base model. Quantization makes the

inference slightly faster (e.g. 6016us vs 5433us for the large model) in

decompressing time due to the weights in linear layer is quantized. Overall, in terms

of decompressing latency, JPEG significantly outperforms the proposed model due

to its simplicity to set up a working environment, and its ability to decompress single

images.

Conclusion

This research experimented with the feasibility of adapting Autoencoder neural

networks through a series of model testing and improvements, and is evaluated

against a commonly used algorithm JPEG through quantitative and qualitative

evaluation, in terms of compression rate, reconstruction quality, and decompression

latency. Although the outcome model failed to achieve a compression latency that

makes it applicable to client applications, through a series of improvements, the

model shows promising scalability that may outperform JPEG on large scale

datasets. Furthermore, as dedicated hardware like NPU become common on client

devices, the latency problem may become feasible as device-side inference become

 33 / 42

more powerful.

Although image quality metrics demonstrate JPEG having superior performance,

human evaluation proved that the proposed model could perform better than JPEG

due to the smoother color changes generated by the denoiser. Furthermore,

candidates all report that sometimes it is indistinguishable between the compressed

and uncompressed results, regardless of JPEG or proposed model. Hence, at such

high reconstruction quality, PSNR and SSIM values are not fully representative of

human perception. Therefore, the proposed model can be applicable for image

archive purposes, where datasets are usually large and heterogeneous, and

archived data are rarely read or written.

For future reference, the proposed model would benefit from structural changes,

such as incorporating text embedded labelling to help the model associate objects

with text vectors, and concatenating features information (e.g. embeddings) with the

output image to assist the denoiser with more information to reconstruct the image

with. Sub-int8 quantization, such as qint1 (1 bit per weight) can be explored, where

bit operation can be used to inferring the model, significantly reducing memory cost

and improving the model’s compatibility with low-end devices. With the rising

popularity of dedicated neural network hardware, this paper will hopefully raise

attention on an alternative compression pathway for researchers, leading to more

efficient data transmission that enables more people to connect with the world.

 34 / 42

Bibliography

1. Ibraheem, Murooj et al. "A Comprehensive Literature Review on Image and Video

Compression: Trends, Algorithms, and Techniques." International Journal of Imaging and

Robotics, vol. 29, no. 3, 2024, pp. 863-876. doi:10.18280/isi.290307. Accessed 5 Jan 2025.

2. Hassan, Shayan Ali, et al. "Rethinking Image Compression on the Web with Generative AI."

arXiv preprint arXiv:2407.04542v1, 2024. Accessed 5 Jan 2025.

3. Micucci, Umberto. "An Introduction to Autoencoders." arXiv preprint arXiv:2201.03898, 2022.

Accessed 5 Jan 2025.

4. Fournier, Quentin, and Daniel Aloise. "Empirical Comparison Between Autoencoders and

Traditional Dimensionality Reduction Methods." arXiv preprint arXiv:2103.04874, 2021.

Accessed 5 Jan 2025.

5. Mahajan, Abhishek. "Linear vs. Non-Linear Dimensionality Reduction: PCA and Kernel-PCA."

Medium, 4 Nov. 2023, https://medium.com/@abhishek8694/linear-vs-non-linear-

dimensionality-reduction-pca-and-kernel-pca-10490f345ba9. Accessed 5 Jan 2025.

6. Weißenberger, André, and Bertil Schmidt. "Accelerating JPEG Decompression on GPUs."

arXiv preprint arXiv:2111.09219, 17 Nov. 2021, https://arxiv.org/abs/2111.09219. Accessed 5

Jan 2025.

7. Loeffler, John. "What Is an NPU: The New AI Chips Explained." TechRadar, 15 Jan. 2024,

https://www.techradar.com/computing/cpu/what-is-an-npu. Accessed 5 Jan 2025.

8. Tiantian, Wang et al. "An Efficient Lightweight Network for Image Denoising Using Progressive

Residual and Attention Mechanism Fusion." Scientific Reports, vol. 14, no. 1, 2024,

https://www.nature.com/articles/s41598-024-60139-x. Accessed 5 Jan 2025.

9. Weigend, Andreas S., et al. "Nonlinear Principal Component Analysis by Neural Networks:

Theory and Application to the Lorenz System." Journal of Climate, vol. 13, no. 4, 2000, pp. 821-

835,

https://journals.ametsoc.org/view/journals/clim/13/4/15200442_2000_013_0821_npcabn_2.0.co

_2.xml. Accessed 5 Jan 2025.

10. Holdsworth, Jim, and Mark Scapicchio. "What Is Deep Learning?" IBM, 17 June 2024,

https://www.ibm.com/topics/deep-learning. Accessed 5 Jan 2025.

11. Delua, Julianna. "Supervised vs. Unsupervised Learning: What’s the Difference?" IBM, 12 Mar.

2021, https://www.ibm.com/think/topics/supervised-vs-unsupervised-learning. Accessed 5 Jan

https://medium.com/@abhishek8694/linear-vs-non-linear-dimensionality-reduction-pca-and-kernel-pca-10490f345ba9
https://medium.com/@abhishek8694/linear-vs-non-linear-dimensionality-reduction-pca-and-kernel-pca-10490f345ba9
https://arxiv.org/abs/2111.09219
https://www.techradar.com/computing/cpu/what-is-an-npu
https://www.nature.com/articles/s41598-024-60139-x
https://journals.ametsoc.org/view/journals/clim/13/4/15200442_2000_013_0821_npcabn_2.0.co_2.xml
https://journals.ametsoc.org/view/journals/clim/13/4/15200442_2000_013_0821_npcabn_2.0.co_2.xml
https://www.ibm.com/topics/deep-learning
https://www.ibm.com/think/topics/supervised-vs-unsupervised-learning

 35 / 42

2025.

12. "What Is Gradient Descent?" IBM, https://www.ibm.com/topics/gradient-descent. Accessed 5

Jan 2025.

13. LeCun, Yann et al. "Deep learning." Nature, vol. 536, no. 7617, 2016, pp. 355-359,

https://www.nature.com/articles/nature14539. Accessed 5 Jan 2025.

14. Elyasi, N., and M. Hosseini Moghadam. "Single CNN with Filter Size of 3." ResearchGate,

https://www.researchgate.net/figure/Single-CNN-with-filter-size-of-3_fig4_343987422.

Accessed 5 Jan 2025.

15. "Autoencoder." Wikipedia, https://en.wikipedia.org/wiki/Autoencoder. Accessed 5 Jan 2025.

16. Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the Dimensionality of Data with

Neural Networks." Science, vol. 313, no. 5786, 2006, pp. 504–507.

https://doi.org/10.1126/science.1127647. Accessed 5 Jan 2025.

17. Bengio, Yoshua, et al. "Learning Deep Architectures for AI." Foundations and Trends in

Machine Learning, vol. 2, no. 1, 2009, pp. 1–127. https://doi.org/10.1561/2200000006.

Accessed 5 Jan 2025.

18. Vincent, Pascal, et al. "Extracting and Composing Robust Features with Denoising

Autoencoders." Proceedings of the 25th International Conference on Machine Learning, 2008,

pp. 1096–1103. https://dl.acm.org/doi/10.1145/1390156.1390294. Accessed 5 Jan 2025.

19. Ranzato, Marc'Aurelio, et al. "Deep Learning for Nonlinear Time Series Forecasting."

Proceedings of the 26th International Conference on Machine Learning, 2009, pp. 1–8.

https://dl.acm.org/doi/10.1145/2689746.2689747. Accessed 5 Jan 2025.

20. Ranzato, Marc'Aurelio, et al. "Stacked Convolutional Auto-Encoders for Hierarchical Feature

Extraction." Artificial Neural Networks and Machine Learning – ICANN 2011, edited by Danesh

Tarapore et al., Springer, 2011, pp. 652–659. https://doi.org/10.1007/978-3-642-21735-7_7.

Accessed 5 Jan 2025.

21. Robinet, Lucas. "Autoencoders and the Denoising Feature: From Theory to Practice." Towards

Data Science, 26 Nov. 2020, https://towardsdatascience.com/autoencoders-and-the-

denoising-feature-from-theory-to-practice-db7f7ad8fc78. Accessed 5 Jan 2025.

22. Hasan, Syed. "AutoEncoders: Theory + PyTorch Implementation." Medium, 24 Feb. 2024,

https://medium.com/@syed_hasan/autoencoders-theory-pytorch-implementation-

a2e72f6f7cb7. Accessed 5 Jan 2025.

23. "Structural Similarity Index Measure." Wikipedia,

https://www.ibm.com/topics/gradient-descent
https://www.nature.com/articles/nature14539
https://www.researchgate.net/figure/Single-CNN-with-filter-size-of-3_fig4_343987422
https://en.wikipedia.org/wiki/Autoencoder
https://doi.org/10.1126/science.1127647
https://doi.org/10.1561/2200000006
https://dl.acm.org/doi/10.1145/1390156.1390294
https://dl.acm.org/doi/10.1145/2689746.2689747
https://doi.org/10.1007/978-3-642-21735-7_7
https://towardsdatascience.com/autoencoders-and-the-denoising-feature-from-theory-to-practice-db7f7ad8fc78
https://towardsdatascience.com/autoencoders-and-the-denoising-feature-from-theory-to-practice-db7f7ad8fc78
https://medium.com/@syed_hasan/autoencoders-theory-pytorch-implementation-a2e72f6f7cb7
https://medium.com/@syed_hasan/autoencoders-theory-pytorch-implementation-a2e72f6f7cb7

 36 / 42

https://en.wikipedia.org/wiki/Structural_similarity_index_measure. Accessed 5 Jan 2025.

24. Wang, Zhou, et al. "Image Quality Assessment: From Error Visibility to Structural Similarity."

IEEE Transactions on Image Processing, vol. 13, no. 4, Apr. 2004, pp. 600–612,

https://doi.org/10.1109/TIP.2003.819861. Accessed 5 Jan 2025.

25. "JPEG." Wikipedia, https://zh.wikipedia.org/wiki/JPEG. Accessed 5 Jan 2025.

26. "Rate–Distortion Theory." Wikipedia, https://en.wikipedia.org/wiki/Rate–distortion_theory.

Accessed 5 Jan 2025.

27. "ImageNet." ImageNet, https://image-net.org. Accessed 5 Jan 2025.

28. He, Kaiming, et al. "Deep Residual Learning for Image Recognition." arXiv, 10 Dec. 2015,

https://arxiv.org/abs/1512.03385. Accessed 5 Jan 2025.

29. "Automatic Mixed Precision." PyTorch Tutorials,

https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html. Accessed 5 Jan 2025.

30. Kim, JJ. "What Is Denoising?" NVIDIA Blog, 9 Nov. 2022, https://blogs.nvidia.com/blog/what-

is-denoising/. Accessed 5 Jan 2025.

https://en.wikipedia.org/wiki/Structural_similarity_index_measure
https://doi.org/10.1109/TIP.2003.819861
https://zh.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/Rate%E2%80%93distortion_theory
https://image-net.org/
https://arxiv.org/abs/1512.03385
https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html
https://blogs.nvidia.com/blog/what-is-denoising/
https://blogs.nvidia.com/blog/what-is-denoising/

 37 / 42

Appendix

A) Autoencoder Model Implementation With Residual Connection

import torch

import torch.nn as nn

class ResidualBlock(nn.Module):

 def __init__(self, in_channels, out_channels, stride, transpose=False):

 super(ResidualBlock, self).__init__()

 self.transpose = transpose

 self.stride = stride

 # Main convolutional layer

 self.conv = (

 nn.ConvTranspose2d(

 in_channels,

 out_channels,

 kernel_size=4,

 stride=stride,

 padding=1,

 output_padding=0,

)

 if transpose

 else nn.Conv2d(

 in_channels, out_channels, kernel_size=4, stride=stride,

padding=1

)

)

 self.activation = nn.ReLU(inplace=True)

 # Adjust residual connection to match spatial dimensions and channels

 if transpose:

 if in_channels != out_channels or stride != 1:

 # Calculate appropriate output_padding

 # Typically, output_padding=1 when stride=2 to align

dimensions

 output_padding = stride - 1 if stride > 1 else 0

 self.residual = nn.ConvTranspose2d(

 in_channels,

 out_channels,

 kernel_size=1,

 38 / 42

 stride=stride,

 padding=0,

 output_padding=output_padding,

)

 else:

 self.residual = nn.Identity()

 else:

 if in_channels != out_channels or stride != 1:

 self.residual = nn.Conv2d(

 in_channels, out_channels, kernel_size=1, stride=stride,

padding=0

)

 else:

 self.residual = nn.Identity()

 self.skip_add = nn.quantized.FloatFunctional()

 def forward(self, x):

 identity = self.residual(x) # Adjust residual if needed

 out = self.conv(x)

 out = self.activation(out)

 return self.skip_add.add(out, identity)

class Autoencoder(nn.Module):

 def __init__(

 self,

 input_channels=3,

 output_channels=3,

 image_size=128,

 num_layers=3,

 latent_dim=256,

):

 super(Autoencoder, self).__init__()

 self.latent_dim = latent_dim

 self.num_layers = num_layers

 # Calculate the size after downsampling

 assert (

 image_size % (2**num_layers) == 0

), "non integer downsampling"

 final_size = image_size // (2**num_layers)

 39 / 42

 # Encoder with residual connections

 encoder_layers = []

 channels = 32 # Starting number of channels

 current_channels = input_channels

 for _ in range(num_layers):

 encoder_layers.append(

 ResidualBlock(

 in_channels=current_channels,

 out_channels=channels,

 stride=2,

)

)

 current_channels = channels

 channels = channels * 2 # Double the number of channels each

layer

 encoder_layers.append(nn.Flatten())

 encoder_layers.append(

 nn.Linear(current_channels * final_size * final_size, latent_dim)

)

 self.encoder = nn.Sequential(*encoder_layers)

 # Decoder with residual connections

 decoder_layers = []

 decoder_layers.append(

 nn.Linear(latent_dim, current_channels * final_size * final_size)

)

 decoder_layers.append(nn.ReLU(inplace=True))

 decoder_layers.append(

 nn.Unflatten(

 dim=1, unflattened_size=(current_channels, final_size,

final_size)

)

)

 for _ in range(num_layers - 1):

 channels = current_channels // 2 # Halve the number of channels

each layer

 decoder_layers.append(

 ResidualBlock(

 in_channels=current_channels,

 out_channels=channels,

 stride=2,

 transpose=True,

 40 / 42

)

)

 current_channels = channels

 # Final layer to get back to output channels

 decoder_layers.append(

 nn.ConvTranspose2d(

 in_channels=current_channels,

 out_channels=output_channels,

 kernel_size=4,

 stride=2,

 padding=1,

)

)

 decoder_layers.append(nn.Sigmoid()) # Ensures output is between 0 and

1

 self.decoder = nn.Sequential(*decoder_layers)

 def encode(self, x):

 latent = self.encoder(x)

 return latent

 def decode(self, latent):

 reconstructed = self.decoder(latent)

 return reconstructed

 def forward(self, x):

 latent = self.encode(x)

 reconstructed = self.decode(latent)

 return reconstructed, latent

 41 / 42

B) Homogeneous Dataset collected

The homogeneous dataset was scrapped from derpibooru.org on 1/30/2023 with the

following search criteria:

“izzy moonbow, safe, solo, score.gte:200, -webm, -animate || izzy moonbow,

suggestive, solo, score.gte:200, -webm, -animate”

Due to the creative nature of this dataset, I am unable to provide the dataset used in

this experiment. However, the scrapper script (written in Node.js) is available here.

C) Test results of the models on different client devices

For testing code, see “benchmark” folder in Appendix 4. All data are measured in

microseconds.

specs Intel Core i5-1135G7,

4c/8t, 8GB DDR4-

3200

AMD Ryzen 7 5800U,

8c/16t, 16GB LPDDR4-

4266

AMD Ryzen 7 5800, 8c/16t,

32GB DDR4-2133

jpeg_load 549.27 88.12 140.23

jpeg_decomp 292.12 214.36 265.12

small_load 687021 76889 33540

small_decomp 7034.11 5014.06 2762.25

base_load 946748 108430 57191

base_decomp 8171.78 6016.66 5019.21

large_load 1811075 83423 9325

large_decomp 11125.22 6911.18 2988.19

small_quant_load 155518 24447 13434

small_quant_decomp 11513.38 4944.5 3170.38

base_quant_load 44112 50047 9325

base_quant_decomp 9372.38 5433.15 2988.19

large_quant_load 58643 42135 25430

large_quant_decomp 7900.95 6331.81 3387.5

https://gist.github.com/GrieferPig/fa65998820828c856cf1779bc45c74b2

 42 / 42

D) Complete experiment code repository

https://github.com/GrieferPig/autoencoder_compressor

Folder description:

- Benchmark: benchmark Rust program source code

- Quantized: Final quantized and unquantized model

- Stats: Statistics for PSNR and SSIM for PNG and proposed models

- Voting_server: Python server host that hosts the voting website

https://github.com/GrieferPig/autoencoder_compressor

