

Investigating the effect on performance using a data structure in graph
algorithms

How does the use of priority queue affect the performance of Dijkstra and Prim

Algorithms?

A Computer Science Extended Essay

3300 Words

Donated to CS EE World
https://cseeworld.wixsite.com/home
26/34 (A)
May 2022
Donator info: Anonymous

Table of Contents
1. Introduction ... 1

2. Theoretical Background ... 2

2.1 Basics of Graph Theory ... 2

2.2 Priority Queue .. 3

2.3 Dijkstra’s Algorithm .. 3

2.4 Prim’s Algorithm ... 8

3. Experiment Methodology ... 10

4. The Experimental Results ... 11

4.1 Tabular Data Presentation .. 11

4.2 Data Analysis ... 14

4.2.1 - Analysing Dijkstra’s Algorithm ... 14

4.2.2 - Analysing Prim’s Algorithm .. 15

5. Conclusion and Evaluation ... 16

6. Works Cited ... 17

7. Appendix .. 18

7.1 Programs for Prim’s Algorithm ... 19

7.2 Programs for Dijkstra’s Algorithm .. 24

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 1

1. Introduction

Graph theory is the study of interrelationships between nodes and vertices. Such relationships

help tackle many areas of sciences and others, such as statistical mechanics, electrical

engineering, operations research, communication networks etc. [1]

Graph theory, holistically, deals with an array of subtopics that, as described above, have

many applications. One of the most interesting problems from this topic is the travelling

salesman problem, which has a wide variety of applications such as scan chain optimisation,

DNA universal strings etc. [1]

Such theories help solve real-life problems computationally. However, achieving the solution

in a specific set of constraints and/or limited resources is challenging. Therefore, algorithmic

analysis is used, which is a method by which the computational complexity of algorithms is

found [2]. Here, computational complexity refers to classifying algorithms based on their

efficiency [3]. Conducting algorithmic analysis on algorithms related to graph theory makes

it extremely efficient and thus allowing it to solve more problems with fewer resources.

Graph theory is considered an extremely vital aspect in many areas, specifically

communications networks and the internet [1]. The algorithms primarily used for the

investigation have a wide variety of uses in different fields. Dijkstra's algorithm is used in

many areas, ranging from digital Mapping services in google maps to social networking

applications and aviation[4]. Prim's algorithm is primarily applied for Network for roads,

Cluster analysis, Game development, Cognitive science, Irrigation channels etc. [5]

This paper essentially seeks to investigate whether a data structure like the priority queue

could help in making two of the most commonly used algorithms more efficient.

This research would be extremely helpful in many areas mentioned above, as the use of these

algorithms would come with a cost of resources such as time, space, money etc. Many

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 2

different data structures could be possibly used in both these algorithms. However,

identifying the best one seems time taking and resource-intensive. Therefore, with help of

this investigation could make it easy to identify whether this is the right one or not. Even

though there are some areas where the use of such data structure can be done to the

algorithms, they have never been experimentally proved. This paper would be one of the

sources of proof for such cases.

To investigate the improvement of analysis, the algorithms were first implemented with

multiple random inputs without and with the priority queue, where the input in both cases

remains the same. The time taken to implement would be recorded and accordingly, the

trends of these recordings were discussed

2. Theoretical Background

2.1 Basics of Graph Theory

The concepts explained below is quintessential in answering the research question as the

algorithms handle graphs with the below properties.

Vertices and Edges

It is a set of points represented as V in the pair (V, E). Edges are considered as the lines that

join the vertices, which are represented as E in the pair (V, E).

Weighted Graph

A graph wherein the edges are without any value. This means that the vertices essentially are

the ones with a numerical value in the graph.

Undirected Graph

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 3

Graphs for which the edges are not directed to a particular node/edge. They are essentially bi-

directional in nature. Dijkstra and Prim’s algorithms are mainly used in these graphs for

finding the shortest path and minimum spanning tree.

Big O Notation

The notation helps in analysing the algorithm(s) mathematically and give an abstract

expression to show its behaviour with an increasing number of inputs/nodes and provides the

worst-case notation of the algorithm, thereby allowing to understand the maximum time it

can take for a set of inputs. For the benefit of validating the experiment and analysing the

results given, the notation will be used for Dijkstra and Prim algorithm. To give an example,

a function of an algorithm f(n)=m(n)+c is represented as O(n). The constant which are part of

the function is not added as they don't put a considerable change in the overall time.

2.2 Priority Queue

A priority queue is used for storing a weighted directed graph based on priorities i.e. as per

their importance. Depending upon this importance, the element is accordingly removed [13].

It can be represented using different data structures, ranging from linked lists to heaps.

Because of its characteristic of prioritising elements and putting them in order in that way, the

addition or removing of elements becomes efficient.

2.3 Dijkstra’s Algorithm

In the field of graph theory, Dijkstra's algorithm is an algorithm used for finding the shortest

path between nodes in a graph, from the source of the graph to any vertices of the graph.

From any point of the graph, the path with the most minimum cost is determined from the

source of the graph. The graph is essentially meant for weighted graph G = (V, E) graphs

with edges having a particular count or cost. Here, all the edges are considered non-negative

[8].

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 4

Every node that is part of the graph apart from the source would be considered us unvisited

node. All the unvisited nodes, together are added to an unvisited set. All the nodes are

assigned with a tentative distance value to either 0 or infinity, where 0 is meant for the initial

node since the distance from the node to itself would be 0. The rest are considered as infinite

which will later be changed since they haven't been part of the path. The initial or the source

node would be set as the current node. From the current node, the neighbouring unvisited

nodes are considered by greedily calculating the distance it takes to reach the node and

comparing it with the current distance. If it turns to be smaller, then the current node would

be the one with the smallest tentative distance. After considering all the possible unvisited

nodes, the current node is considered as visited, which is then removed from the unvisited set.

Such a process of greedily finding the shortest path is continued endlessly until there are two

possible situations, which forces the algorithm to stop k: [11].

1. If the destination node has been marked visited

2. The tentative node between the nodes is infinity(only possible when there is

no possible connection [9]

Pseudocode of Dijkstra’s Algorithm

Figure 1Pseudocode of Dijkstra's Algorithm

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 5

The pseudocode is broken down into three loops, where each loop is working on one of the

sub-parts of the algorithm. This section will be covering each loop, explaining how they

individually achieve Dijkstra’s algorithm

for each in vertex v in Graph from line 5

This loop essentially names each vertex as infinity and the source node is undefined. This is

the implementation of steps 1 and 2 described in the previous section. The arrays are tools to

record the distance possible from the source node. In addition, line 9 is the adding all the

vertices to the set Q

while Q is not empty

The loop is hovering through the set and checking the ones that are not in the minimum

distance. These vertices are being removed from the set Q. Line 12 and 14 are essentially

doing it. Step 3 is being executed using this loop. The loops take place till the set Q is not

empty.

for each neighbour v of u still in Q

This loop essentially does the rest of the steps described as the process. The loop explores all

the potential neighbours of u which are part of the set Q. It then measures the distance it takes

to move the neighbours by calculating the sum as shown in line 17, where distance and the

length of the edges are being added. Now, the summation is compared using the if construct

in line number 18. Line 19 and 20 ensure that the best possible node to move is added or

marked as visited.

Miscellaneous code

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 6

dist[source] -> 0 is the idea of calling the distance from the source code to the source code is

0. ‘return dist[], prev[]’ returns the distance from the source node to the end node. prev[]

returns the nodes from the shortest path can be taken.

Example of using the algorithm
Consider the following weighted undirected graph shown in Figure 2

Figure 2 An example of a weighted undirected graph

In this figure, consider the first node connected to edges 3 and 5 as the current node. Except

for that node, the rest are considered as infinite as there hasn't been a path decided. Figure 2

accurately shows this.

Figure 3 Graph with vertices named infinity and a source node of 0.

0 is considered as the current node and the rest as the unvisited node part of an unvisited set.

From 0, each neighbouring node with a tentative distance is calculated and compared against

the current one, to greedily find the shortest path. Figure 3 elaborates this further.

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 7

Figure 4 Updated graph with number vertices indicating the shortest path possible to each of them

Here, the comparison between the distance 3>6 shows how the algorithm traverses efficiently

keeping the shortest edge in mind. From node 3, the neighbouring nodes are considered and

are numbered based on the tentative distance. However, if the tentative distance of the

adjacent vertex is lesser than the new tentative vertex, it mustn't be updated. It is seen in

Figure 3.

Finally, Figure 4 shows the shortest distance from source 0 to the destination node with a

tentative distance of 6 after considering all the possible vertices to traverse.

Figure 5 Final graph showing the shortest path possible to the destination from the source 0

By using the priority queue in Dijkstra’s algorithm, the very idea of prioritising the vertex

and edge with the least tentative distance could allow for its growth in becoming much more

efficient than the classical way, using adjacency matrix. In other words, the priority queue

helps in finding the best first search, where rather than focusing on the depth or the breadth of

traversing but finding the best or the most optimal solution.

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 8

2.4 Prim’s Algorithm

Prim's algorithm is a minimum spanning tree algorithm which focuses on finding the subsets

of the edges of that graph which from a tree that includes every vertex and that has the

minimum sum of weights among all the trees that can be formed from the graph [9]. Just like

Dijkstra's algorithm, Prim's algorithm focuses on weighted undirected graphs. [10]. In

essence, the algorithm finds the minimum spanning forest in a disconnected graph [10]. Here,

the minimum spanning tree is the subset of edges of a connected, edge-weighted undirected

graph that connects all the vertices with the minimum weight possible.

Compared to Dijkstra's algorithm, Prim's algorithm functionality is rather a simple one and

uses the greedy approach. A randomly chosen vertex is initialised, which is made like a tree.

This tree is grown with one edge which is connected to vertices that are not part of the tree,

and by whom the minimum-weight edge is found and accordingly transferred to the tree. The

above process is repeated extensively until all the vertices are part of the tree. [10]

Pseudocode

Figure 6 Pseudocode of Prim's Algorithm. Adapted from [15]

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 9

Here, three variables have been introduced: G, U and V for graph and vertices where G is the

graph on which MST(minimum spanning tree) is found. U is used for choosing the initial

vertex that helps start the tree, as explained above. U is first given with a particular value to

initialise and introduced to a loop with V to allow the tree to grow with edges. The line "let

(u,v) be the least cost V-U; " is used for identifying the minimum value based vertex to

add in the tree. Finally, T and U have been collected with the tree with the least values

possible.

Example of using the algorithm

To illustrate the above concept, consider the following example of an unweighted undirected

graph shown in Figure 7.

Figure 7 Example of an undirected weighted graph

Initially, a random vertex A has been chosen to begin a tree. Figure 8 shows the connection

established between the vertices as a tree

Figure 8 Initial node A growing a tree with the edge B

Consequently, A and C is further linked as shown in Figure 9 since A and C have a cost of 4

compared to A to B to C.

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 10

Figure 9 Connection the nodes A and C as part of the tree

Such process is further repeated to expand the tree as described in Figure 10

Figure 10 Expansion of the tree with the least cost

Priority queue makes the algorithm efficient in two ways [10]: Extracting the minimum from

all the possible vertices that aren't part of the minimum spanning tree and extracting the

vertex using the new keys of its adjacent vertex.

3. Experiment Methodology

Primary experimental data is the main source of data in this paper. Two algorithms, Dijkstra,

and Prim were programmed (given in the appendix, heavily adapted from [6],[7], [12] and

[14]) to run with 7 random inputs, increasing from 4 to 11 vertices, with and without priority

queue. This experimental method was chosen because there was limited secondary data to

answer this paper's question, except for the mathematical approach. An experimental method

hasn't been done to see the data structure's effect on the performance that can be used. In

addition, providing comparison through implementation helps in getting an accurate picture

of the impact the data structure has on the performance of the algorithms since many

constants are excluded in the mathematical interpretation of the algorithms. However, some

limitations do exist in this methodology; the number of vertices has only been 7 as going

further affect the control variable, the computer. The data given to the algorithm as input is

written beforehand in the code itself. It is then executed, and the time is recorded as input.

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 11

For every input given, the output is taken thrice and then averaged to increase the reliability

of the values, thereby strengthening the primary data.

Variables’ part of the Experiment

The independent variable would be the number of vertices provided to each of the algorithms

since they will be under control. The dependent variable would be the amount of time taken

with and without the priority queue since an increase in vertices would increase the

algorithm's running time. The control variable would be the input used before and after using

the priority queue and the computer specs.

4. The Experimental Results

4.1 Tabular Data Presentation

Table 1 Time in Nanoseconds for Prim's algorithm with and without priority queue

Table 2 Time in Nanoseconds for Dijkstra's algorithm with and without the priority queue

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 12

Graphical Presentation of Dijkstra’s algorithm without a priority queue

Graphical Presentation of Dijkstra’s algorithm with a priority queue

Figure 11 Graph of Dijkstra's algorithm without priority queue

Figure 12 Graph of Dijkstra's algorithm with priority queue

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 13

Graphical Presentation of Prim’s Algorithm without a priority queue

Graphical Presentation of Prim’s Algorithm with a priority queue

Figure 13 Graph of Prim's algorithm without priority queue

Figure 14 Graph of Prim's algorithm with priority queue

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 14

4.2 Data Analysis

The time is taken in nanoseconds as compared to other seconds, it is in integer format.

Therefore, it becomes easier to draw graphs and analyse them accordingly. Scatter plot is the

primary method for drawing graphs as it helps in understanding the relationships between

variables, thereby allowing us to understand whether the use of data structure would affect

the performance or not. As theorised, the data has been consistent with the kind of effect the

data structure would have on the performance of the algorithms.

4.2.1 - Analysing Dijkstra’s Algorithm

The equation of the trend line in Figure 11 is less than Figure 12’s trend line. This suggests

that there is relatively less growth by approximately 29%. The growth rate is extremely

important when it comes to the analysis of the performance. As the number of vertices

increases, the growth rate shows the rate at which the time is growing. Therefore, it can be

inferred that the growth of Dijkstra’s algorithm without a priority queue is less than Dijkstra’s

algorithm with a priority queue. The primary that this is possible for the difference in growth

is the loss of repetition that is brought by the priority queue. When an adjacency matrix is

used in Dijkstra’s algorithm, a single edge with a particular weight is repeated in two

locations. For example, consider two vertices 3 and 4 with an edge comprising a weight of 7.

Now in an adjacency matrix, 7 would be presented in the 3rd row of the 4th column and 4th

row of the 3rd column. On contrary, the priority queue stores value with new edges and do

not ensure repetition. This repetition could be one of the causes for the increase in time with

the increasing number of vertices. Such trends from Figures 11 and 12 could help in

understanding that the dynamic approach of storing information in a priority queue could be

one of the reasons for the improvement of performance.

In Figure 12, an anomaly is detected (94737.3333) through intuition as compared to other

data points, it is farther from the line. Such anomaly could be present due to the CPU

processing time taken as it is subject to change for every execution. This can be noticed in

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 15

Table 2 for vertice 6 where Output 1 is 139171 nanoseconds, which is way off the margin as

compared to Output 2 and 3. Such anomaly could impose a problem in devising the

correlation relationship. However, exempting them could provide an accurate understanding

of how well the performance of the algorithm has improved with the use of a priority queue.

Figure 12 shows 4 points which compared to Figure 11, are at a relatively lower position

vertically. For example, 53863 < 39296 [n =4]; 65679>61633 [n=5] etc. Although they have

a different number of vertices, the difference between them in terms of vertices is extremely

less. Therefore, they can be considered as examples. The most optimum performance for any

algorithm is when the y=0. Therefore, it implies that the closer the complexity is, the more

efficient it is. These 4 points help in showing that the approach with the priority queue makes

the algorithm takes less time.

4.2.2 - Analysing Prim’s Algorithm

Like Dijkstra’s algorithm, Prim’s algorithm does have similar characteristics as the essence is

the same for both the algorithms. Figure 14 shows the trend line’s equation is relatively less

compared to the trend line’s equation of Figure 13 by approximately 5% which suggests that

there is somewhat improvement in performance with the use of priority queue. Comparative

to Dijkstra’s algorithm, the use of priority queue didn’t show any significant improvement by

a higher margin. This could be primarily because of the CPU specs. Although considered as a

control variable, the difference in running time could show how effective it is in impacting

the time taken for an algorithm to execute. Because Dijkstra and Prim’s algorithm uses the

greedy approach in finding the vertices with the shortest weight, the difference in the use of

priority queue must be the same. Since it isn’t, it can be inferred that the computer specs can

impact it, which is something that needs to be changed for a better experiment. This doesn’t

mean that the experimental results can be proved to be false but could be something that can

be worked upon.

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 16

The overall line in Figure 14 is relatively closer to the x-axis than in Figure 13. As explained

in the third argument for the analysis of Dijkstra’s algorithm, the closer the points are, and by

extension the line is, the more efficient it is. Such a trend can be observed in Figure 14 as

compared to Figure 13, which is relatively farther away. This could be because of a big

anomaly, such as the one with 6 vertices in Figure 13 with 94737 nanoseconds. Despite

excluding them, the overall growth in time from Table 1 and Figure 13 helps in

understanding the reason why the graph is quite farther away from the y-axis.

5. Conclusion and Evaluation

In this paper, the effect of using an abstract data structure in Dijkstra and Prim’s algorithm is

experimented with and analysed. Logical explanations for the trends and anomalies were

provided.

The results show that the algorithm takes relatively less time with the use of data structure as

compared to the classical adjacency matrix way. Although there were some anomalies

outside the pattern due to the specs, the final trend of difference in performance was

observed.

By using the priority queue, the repetition of storing the same element wouldn’t be possible

as it primarily has new edges and does not repeat two edges in terms of storage. Therefore, it

supersedes in performance than the adjacency matrix. Although there isn’t a significant

improvement as per the experimental results, having more vertices with better computer

specs as the control variable could make the difference more accurate and visible. However,

it can be finally said that using a priority queue is a better option for these algorithms

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 17

Hopefully, this paper will help software engineers, programmers and other students who

encounter these algorithms to pursue this data structure to save their running time and thereby

be able to present a much more efficient solution with the least resources, and be able to solve

constraint-based problems easily

6. Works Cited

Most of these references were only used in the Theoretical Background information section.

[1] - Pirzada, S., 2008. __Applications of Graph Theory__. [online]
https://onlinelibrary.wiley.com/. Available at:
<https://onlinelibrary.wiley.com/doi/10.1002/pamm.200700981>

[2] - Wikipedia. (2020). Analysis of algorithms. [online] Available at:
https://en.wikipedia.org/wiki/Analysis_of_algorithms [Accessed 15 Jun. 2020].

[3] - aofa.cs.princeton.edu. (n.d.). Analysis of Algorithms. [online] Available at:
https://aofa.cs.princeton.edu/10analysis/ [Accessed 6 Jul. 2020].

[4] - dipesh99kumar (2020). Applications of Dijkstra’s shortest path algorithm. [online]
GeeksforGeeks. Available at: https://www.geeksforgeeks.org/applications-of-dijkstras-
shortest-path-algorithm/ [Accessed Jul. 12AD].

[5] - Mitanshupbhoot (2020). Comparative applications of Prim’s and Kruskal’s algorithm in
real-life scenarios. [online] Medium. Available at:
https://medium.com/@mitanshupbhoot/comparative-applications-of-prims-and-kruskal-s-
algorithm-in-real-life-scenarios-4aa0f92c7abc [Accessed 20 Jul. 2020].

[6] - Geeks for Geeks (2016). Dijkstra’s Shortest Path Algorithm using priority_queue of
STL. [online] GeeksforGeeks. Available at: https://www.geeksforgeeks.org/dijkstras-shortest-
path-algorithm-using-priority_queue-stl/ [Accessed 17 Jul. 2020].

[7] - Geeks for Geeks (n.d.). Prim’s Minimum Spanning Tree (MST) | Greedy Algo-5 -
GeeksforGeeks. [online] GeeksforGeeks. Available at: https://www.geeksforgeeks.org/prims-
minimum-spanning-tree-mst-greedy-algo-5/ [Accessed 16 Jun. 2020].

[8] - Cormen, T. H., & Leiserson, C. E. (2009). Introduction to algorithms, 3rd Edition. 24.3
- Dijkstra's algorithm on Page 658

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 18

[9] - www.programiz.com. (n.d.). Prim’s Algorithm. [online] Available at:
https://www.programiz.com/dsa/prim-algorithm [Accessed 5 Sep. 2020].

[10] - Wikipedia. (2020). Priority queue. [online] Available at:
https://en.wikipedia.org/wiki/Priority_queue [Accessed 18 Sep. 2020].

[11] - Wikipedia Contributors (2019). Dijkstra’s algorithm. [online] Wikipedia. Available at:
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm [Accessed 13 Aug. 2020].

[12] - GeeksforGeeks. (2016). Prim’s algorithm using priority_queue in STL. [online]
Available at: https://www.geeksforgeeks.org/prims-algorithm-using-priority_queue-stl/
[Accessed 18 Jun. 2020].

[13] - GeeksforGeeks. (2018). Priority Queue | Set 1 (Introduction) - GeeksforGeeks. [online]
Available at: https://www.geeksforgeeks.org/priority-queue-set-1-introduction/ [Accessed 19
Jun. 2020].

[14] - Geeks for Geeks (2018). Dijsktra’s algorithm. [online] GeeksforGeeks. Available at:
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/ [Accessed
26 Sep. 2020].

[15] - Software Testing Help. (n.d.). Minimum Spanning Tree Tutorial: Prim’s and Kruskal’s
Algorithms. [online] Available at: https://www.softwaretestinghelp.com/minimum-spanning-
tree-tutorial/ [Accessed 19 Jun. 2020].

7. Appendix

The used codes given below are taken and modified from [6]and [7] and have been modified
while collecting data.

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 19

7.1 Programs for Prim’s Algorithm

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 20

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 21

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 22

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 23

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 24

7.2 Programs for Dijkstra’s Algorithm

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 25

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 26

How does the use of priority queue affect the performance of Dijkstra and Prim Algorithms?
 27

