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1 Introduction

Natural language processing (NLP) is a rapidly growing field within data

science. This field has led to the development of specialized machine learn-

ing models that allow us to summarize, analyze, and classify text. These

specialized models are very applicable to a variety of situations. For exam-

ple, if a company wants to know more about its customers, it can use NLP

to summarize and classify reviews - thus, gaining valuable insight [1]. I work

in the online shopping department at my local Superstore which happens to

employ NLP to discover potential improvements that can be made in our

department by analyzing customer surveys. For example, if customers are

dissatisfied with our selection of produce, NLP can allow us to detect this

sentiment without needing a human to read every single review. Since cus-

tomer sentiment can be described and communicated in so many ways (there

are many ways one can word one’s dissatisfaction - such as using sarcasm),

it’s almost necessary for us to use NLP if we want to get accurate insight

- rather than getting humans to read each review or relying on other more

traditional algorithms (such as word frequency analysis). I received part of

my inspiration for this paper while working in my department.

Another potential application of NLP would be if the local library wants

to label each of their books based on its genre - it can use NLP models
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to accurately [2] classify and label each book without requiring as much

manual labor. Since I am an avid reader and have been looking at reading

classics on my kindle, I’ve come across the Gutenberg project which makes

available a lot of classic books in electronic format. The issue I saw was that

each book was not labeled with an actual creation date. The date available

in the metadata, was the date the book was re-released by the Gutenberg

project. Thus, if I wanted to find out the actual creation date of the book

I was reading, I had to refer to outside sources. This served as my main

inspiration for this paper - I thought that it would be interesting to be able

to label books with their creation date using NLP.

One recent development in the field of NLP was the discovery that

character-level convolutional neural networks (CNNs) can be applied to the

problem of text-classification and yield significant performance increases -

when compared with traditional methods. The structure of CNNs allow

them to capture patterns in texts such as word appearance and word ar-

rangement. This paper hopes to take advantage of CNNs and their associ-

ated performance, and to answer the question of: "To what extent are

character-level CNNs viable for classifying texts by century?" -

when they are created. This research question is unique when compared

with prior applications - it is a rather difficult one. Firstly, there is a prob-

lem of focus. There are so many different ways the CNN might end up

approaching the problem as there isn’t one surefire way to discern the cen-

tury of a text - or that we’ve at least discovered. A CNN can look at the

frequency of occurrence of a certain phrase such as "hereto" in order to dis-

cern between the 20th and 18th century. Or, it might notice that the 20th
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century texts had more of a focus on the theme of "progress" rather than

let’s say "liberty". Perhaps it notices that 18th century texts were more

often from the perspective of a farmer rather than a factory worker. The

second point of hardship is that the amount of data needed to be processed

is significantly more than prior applications that have been dealing with the

classification of something around the length of an article. An article is short

and the meaning - if that’s what you are classifying - is somewhere in the

body of the text. This application is using a dataset of texts, some having

many chapters. My computing resources are not powerful enough to have

the CNN read each text fully. Thus, I’ve had to shorten each text, hoping

that the patterns needed to discern between the two centuries, were in the

shortened version of the text. Perhaps, the CNN won’t be able to identify

the prevalence of ’liberty’ in the texts of the 18th century all because I had

to shorten them. Also, because my CNN (design) will be looking at char-

acters as being the smallest unit of text, there will be many more ’features’

or attributes than instances or data points. The length of each text is 3740

characters, while there are only 2101 books. Thus there is a small dimen-

sionality problem (often referred to as the Curse of Dimensionality). For this

reason, there might not be enough data to achieve the full performance a

CNN potentially has to offer. For these two reasons, my problem is rather

unique and challenging. Ideally, this research question will shed more light

on the limitations of current-day CNNs.

To answer this research question, I will first provide a theoretical back-

ground of CNNs. Then, I will explain in more detail my chosen CNN design

(sometimes referred to as architecture). Finally, I will carry out an exper-
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iment to actually obtain some experimental data and figure out whether

using CNNs for this application would be viable. To ensure the validity of

my results, I will be using cross-validation to ensure their accuracy.

2 Theoretical Background

2.1 Neural Networks

Neural networks (NNs) are a type of machine learning model that learns

from data to either create or classify data points. NNs are made up of

several layers of interconnected nodes (node is practically synonymous with

neuron and perception) that propagate data from an input layer to an output

layer. The whole model is represented by a series of matrix operations (1)

where the data at each layer is first summed, then weighed, then ’biased’, and

then passed through an activation function. This process is called the feed-

forward process and allows NNs to carry out complicated logical ’decisions’

- for example, two parallel nodes can act as a XOR or an AND logical

operation. Because the behavior of nodes can be adjusted (learned), NNs
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can find the patterns that contribute to a certain classification.
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Equation 1: The matrix operations between layers, where phi is the

activation function.

Each connection between nodes is assigned a weight value. This weight

value corresponds to how much ’weight’ is placed on the information going

between the connected nodes. If the weight is high, the node is more affected

by the firing - which represents the information - of the connected node.

Starting from the input layer, the inputs are multiplied by the weights and

are summed. This is done through a dot product, so we don’t have to deal

with each node individually. Each node’s information is stored as elements

inside of matrices - instead of having separate vectors of weights for each

node, we put them together into a matrix. Each node also has a bias. Since

nodes are supposed to represent neurons, the bias is relative to how much

easier it is for a neuron to fire; by adding a bias to the weighed sum, we get a

higher probability of the activation function ’firing’. The activation function

is a mathematical representation of the action potential of a neuron. If the

weighed sum + bias is large enough, the activation function ’fires’ - activates.
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Because the output layer is also made up of nodes, each node can be assigned

to represent a different class. When the network is inputted a data vector,

the data propagates through the network and eventually arrives at the output

layer where the node representing a correct class fires. If several nodes fire or

if the correct node doesn’t fire at all, the NN uses the negative gradient of the

error (chosen as part of the architecture) function to then adjust the inner

variables (this is done during the training period) - the weights and biases

described above. My chosen error function works by finding the difference

between the optimal output and the real output (and then summing and

squaring the difference). This is why a NN is a machine learning model.

2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) don’t differ significantly from regular

neural networks (NNs). The main difference is that prior to being fed into

a regular NN (referred to as "fully-connected layers"), the data is ’filtered’

and simplified by a set of specialized layers.

If you wanted to work with an image, you could technically have each

pixel be a separate node in the input layer. However, as you add more and

more input nodes in the input layer, the computational power needed, quickly

increases to non-manageable levels [3]; as you add more nodes you also add

more weights and biases which make the matrix math quite computation-

ally intensive. As a solution, it was discovered that applying convolutions

and sub-sampling - via these specialized layers - would allow NNs to work

with multidimensional data, such as images, without sacrificing much per-

formance. Applying convolutions and sub-sampling, simplifies the data -
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while retaining the most important features - and allows us to comfortably

work with these forms of ’high-density’ information. The convolutional and

sub-sampling layers work by using a set of scanning kernels (often reffered to

as filters and represented as a matrix) - that move from the top left corner of

the image to bottom right - which apply the specific operation (convolution

or sub-sampling) to each pixel in the image (the size of the kernel at a time).

For this reason, CNNs are able to capture spatial and temporal dependen-

cies in the data [4], which are ultimately the features most important for the

classification of a picture.

Because CNNs work by using kernels that capture spatial and temporal

dependencies, they are naturally very popular for image classification. How-

ever, because text also has spatial and temporal dependencies, CNNs can

also be used for text classification with very minor modification to the data

and the model architecture. Previous studies have found that CNNs can

be successfully applied to traditional text classification problems and with

very performative results. In this case, I used a CNN because I wanted to

take advantage of the aforementioned ability to discern spatial and temporal

patterns, and the flexibility that they provide - because of their computa-

tional efficiency, I am less limited by the type of feature that I am allowing

the CNN to discern. Using traditional models, I’ve always had to decide on

which features I would allow the model to learn by configuring it to take in

a certain input - such as a word frequency dictionary. With a character-level

CNN, I can just feed in the text with minor amounts of pre-processing. A

CNN configured to classify text would also use kernels to scan the text, how-

ever, the kernels would be only one dimensional - in an image, the vertical
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placement of pixels matters more, than the vertical placement of characters

in text.

2.3 Convolution and Sub-sampling Operations

The convolution operation (see Figure 1) works by multiplying (element-wise

matrix multiplication) elements of the kernel and the numerical value of the

pixels in an image or the characters in a text (usually the intensity of color

of a pixel or the alphabetically assigned numerical ID of the character) at

that particular place in the image or the text. The elements of a kernel

(represented as a matrix) are equivalent to the weights in a normal NN and

after the ’weighing’ has occurred, the matrix elements are summed - just like

in a regular NN. Like the weights in a regular MN, a kernel’s elements are

adjusted during the training period. Since the CNN uses several kernels at

each layer and since they are adjusted (trained), each kernel ends up focusing

on a feature - such as one kernel might look for a circle in the image while

another might look for an X. The output of each kernel is referred to as a

feature map and is what is transferred to the next layer. In the final layer the

feature maps are collapsed into one dimension and are then fed into the fully

connected layers (the regular NN part), which would look at the presence

of features when making its decision. In text, the feature maps might be

representing a word, phrase, or even punctuation. Using these feature maps,

a CNN would ideally be able to learn how to classify the century of a text.

Figure 1: The convolution operation.[5]

10



The subsampling operation is quite simpler than the convolution oper-

ation. All it does is simplify the image or the text using one of several

subsampling methods that are chosen by the model’s architecture. In my

case, the subsampling method chosen was max-pooling, which works by also

using scanning kernels but which take the largest numerical value present in

the ’field of view’ of the kernel and assemble that value into a thus downsam-

pled output matrix. Ideally, using the right number of max-pooling layers,

the CNN would be left with simple enough data to collapse the dimensions

of, and feed into the fully-connected layers. If the final feature maps are

still quite large (after all the max-pooling and convolutions), one could use a

global pooling layer which sub-samples the whole feature map (using MAX

in my case) and outputs a single value. Using convolutions and sub-sampling

operations, a CNN can simplify and work with quite information-dense data.

Refer to Figure 2 for a visual representation of a typical CNN structure.

Figure 2: A typical CNN.[6]

2.4 Epochs and Cross-Validation

Because I don’t have infinite data to train my model on, I had to train the

model on the same data for several ’epochs’ - iterations. For this investigation

I found that 20 worked best.

Cross-validation (see Figure 3) is a method of validation used to make

sure the model isn’t overfitting (too specialized and fitted to the training

dataset). It works by splitting the dataset 90% training, 10% testing. After
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all the testing has occurred on the 10% split, the two combine and the process

is repeated on another different 90% 10% split (there is no overlap in the

testing 10% between repetitions). This way we are able to test/train on

100% of the data. This allows us to see if the model is doing what it is

supposed to - learning how to classify the texts rather than just memorizing

the dataset.

Figure 3: k-cross validation where k is in my case 10. At each iteration
different portions of the dataset serve as training and testing.

3 Experimental Methodology & Materials

3.1 Experimental Procedure

1. Pre-process the data and convert it into a usable file format for Weka

(See Figure 4).

2. Set up the model using the Weka command line interface (commands

used are included in appendix).

3. Set up the instance iterator to read each book from left to right and

recognize each column as a character.

4. Train the model on the training data (a 90% split from the initial

dataset).

5. Run the trained model on the testing data (a 10% split from the initial

dataset).
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6. Record the evaluation metrics and repeat 10 times (10 folds).

Figure 4: The program I used, Weka, is used to rapidly prototype and test
different models and algorithms. I used the command line interface.

3.2 The Dataset Used

The dataset was self-compiled by downloading the freely available texts re-

leased by the Gutenberg project. Since I don’t have the computational re-

sources to be able to process whole books, each text was shortened to 3740

words - the length of the shortest text in the dataset. For the data to be

properly used, some necessary pre-processing measures have been taken. In

total, there were 2101 usable texts - some weren’t properly labeled with a

date which I could train the model with - 1051 texts from the 18th century

and 1050 texts from the 20th.

3.3 Pre-processing

The data was pre-processed in R using a custom script (see appendix). As I

mentioned earlier, each of the texts was shortened to 3740 characters. Before

this, however, each text had 4000 characters of the beginning removed in

order to remove the Project Gutenberg header. Then, all extra whitespace

and non-alphanumerical characters were removed. The text was lowercased

and each of the characters was translated into a number from 1-37 - where

37 is the space character. After pre-processing, the data was outputted as

a .csv where each comma separated value represented a character. The last
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column in the file stored the label of the data, in this case, the century -

either 18th or 20th.

3.4 Model Architecture

The model architecture I chose consists of 2 convolution layers separated by

sub-sampling layers, a global-pooling layer, and 1 fully-connected layer. The

activation function used for the output is sigmoid, and the one used for each

of the layers is ReLU (Figure 5).

Figure 5: Graph comparing Sigmoid and ReLU activation functions. Sigmoid
spans from y=0 to y=1. ReLU spans from y=0 and has no upper limit. An
output close to 1 for sigmoid would be considered "activated" while ReLU
is without an real firing point and the larger the value, the stronger the
activation. [7]

The gradient optimizer is ADAM which was chosen for its performance

See Figure 6. I chose this architecture because it performed slightly better

than the other architectures I was working with (e.g. 3 cov. layers, 3 max-

pool. layers, 1 glob. pool. layer, and 2 dense layers).

Figure 6: Graph showing that the ADAM optimizer is most efficient. [8]
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4 Experimental Results & Reflection

4.1 Results Tables

4.1.1 20th Epoch Performance Metrics

This table was created by taking the 20th epoch target metrics for each

cross-validation fold in terms of Twentieth Century.

Loss: Accuracy: Precision: Recall:

0.82 0.77 0.71 0.92

0.33 0.77 0.70 0.92

1.12 0.75 0.71 0.86

0.47 0.77 0.70 0.94

0.67 0.77 0.72 0.89

0.00 0.78 0.72 0.92

0.55 0.76 0.68 0.96

0.05 0.75 0.67 0.98

0.01 0.77 0.71 0.92

0.09 0.76 0.68 0.98

4.1.2 Confusion Matrix

a b <- classified as

617 433 a (18th Century)

82 969 b (20th Century)

4.1.3 Stratified Cross-Validation Results

Correctly Classified Instances: 1586 - 75.5%
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Incorrectly Classified Instances: 515 - 24%

Total Number of Instances: 2101

4.1.4 Detailed Accuracy By Class

Precision Recall MCC Class

0.883 0.588 0.541 18th

0.691 0.922 0.541 20th

0.787 0.755 0.541 Weighted Avg.

4.2 Results Graphs

Figure 7: Experimental results graphed vs. Cross-validation folds. Reported
at the end of the training period for each fold and in terms of the 20th
century.

5 Analysis & Conclusion

5.1 Evaluation Metric Explanations

The evaluation metrics reported for this investigation were chosen by the

type of problem - binary classification. Thus F1 scores were not reported

as they are not as accurate as the MCC in terms of evaluating the model’s

accuracy [9]. True positives are instances of the positive class (in this case,

18th century) that were correctly classified with the right label - 18th as 18th.

False positives are instances of the positive class that were classified with the

wrong label - so 18th as 20th. True and false negatives are just using the
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negative class - 20th century. Precision is described as the ratio between the

# of correctly identified instance for a class and the total number of instances

that the model guesses to be in that class (so true positive + false positive

or true negative and false negative). Precision is a measure of how often

the model is correct in its prediction of an instance’s class (18th or 20th).

Precision is not very useful by itself, and here’s why: Imagine you have a NN

which is capable of identifying terrorists. Aside from the ethical problems of

such a NN existing, technically, if the NN always guesses that a person is not

a terrorist, they would be correct 99.9% of the time. However, this doesn’t

mean that the model is actually doing what it is supposed to - it doesn’t

correctly identify terrorist 99.9% of the time. This is where recall comes

in. Recall is the ratio between the number of true classification for a class

and the sum of the number of true and false identifications for that class.

Recall thus provides us with a measure of how many instances of a class the

model can classify correctly. How many terrorists can the model identify?

99.9%? Loss is the output of the error function. The last evaluation metric

I chose to report is the Matthews Correlation Constant or MCC (Figure 8),

which is regarded as a balanced measure of a binary classification model’s

performance. The MCC takes into account all four squares of the confusion

matrix and ranges between -1 and 1. A value of 0 would mean performance

no better than random, a value of 1 would mean perfect performance, and -1

would mean a model totally wrong in its predictions. With all four metrics,

we can move on to the analysis.

Figure 8: The equation for the Mathews Correlation Coefficient.

17



5.2 Results Analysis

The first major thing I saw in my data was that 18th century had high

precision but low recall, while 20th century had high recall but low precision.

This means that the model more often correctly identified 20th century texts

but was only correct 69% of the time when it actually ended up guessing 20th

century. One might interpret this result as suggesting that since the model

more often guessed 20th century, it was able to correctly identify more of the

20th century texts. This also suggests that the model was less hasty to guess

18th century rather than 20th century but was correct 88% of the time. This

might be a result of the model, perhaps finding a linguistic feature common

to most but not all 18th century text. Using this feature the model was

almost certain that a text would be 18th century, but because this feature

wasn’t in all texts of the 18th century, it more often guessed 20th. Perhaps

in the end, the CNN focused on the presence of a theme common to the 18th

century but largely absent from the 20th. Since the MCC score is above 0

and is slightly above halfway to 1, I would conclude that this binary classifier

is rather O.K - it has a strong correlation. But is this model viable?

5.3 Experimental Analysis & Limitations

In my testing, I only really found 2 distinctive configurations that consis-

tently worked. I wasn’t sure exactly why, but for a lot of configurations, the

model didn’t classify 20th century at all. I believe this is something to do

with the CNN not finding useful patterns in the text however it might have

had something to do with the configuration file of the model - because I was
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using the non-GUI version of Weka, I didn’t have all the tooltips and might

have missed something which prevented the other configurations from work-

ing. My reported data was for the better of the two configurations which

worked.

A major limitation for this project was the size of my dataset. Like I

mentioned in my intro, Project Gutenberg doesn’t have their books labeled

by creation date. For this reason, I had to rely on an incomplete third

party resource, which only ended up having the information for 2101 texts.

2101 texts still seems like a lot, but it’s likely the reason the model couldn’t

perform better. If I had more texts, I would likely have better performance.

Also, since my computer isn’t powerful enough to process each of the texts in

its full length, I’ve had to shorten texts, and this might have removed some

valuable features the model would have otherwise used. Like I mentioned

in my Results Analysis, the model likely found a pattern or theme that was

absent from the 20th century but not from the 18th which allowed the model

to make accurate predictions in terms of 18th century. If I had more data

- and longer text - it would be easier for the model to find these features

and the model would have likely had a greater performance See (Figure 9).

With this experiment I had too much data for my computer to handle, but

not enough to allow the model to perform at its best.

Figure 9: This graph shows that large NNs such as CNNs benefit most from
more data.[10]

Because I used cross-validation, I am not worried about the possibility

that my model overfit to the data and that my results are inflated. If you
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look at the metrics at the 20th epoch and the metrics after the testing has

occured (stratified), we see that there is a difference (especially in accuracy).

This is likely due to the model overfitting (to a degree) for each epoch, but

when stratified, we have a more accurate representation of its performance.

Even though the final accuracy of the model is only 75%, this model

can still be useful and has real-life implications. Firstly, a model like this

- perhaps trained with more data and able to predict the decade - could

be applied by Project Gutenberg to reduce the amount of manual labor the

volunteer organization needs to carry out. The model could assign each text

a date of creation and then whoever accesses the text next time can check

and make sure this date is correct or at least reasonable (if the actual date

is unknown). The important thing is that this investigation proves that it is

possible and worth pursuing (viable).

5.4 Conclusion

This investigation aimed at assessing the viablity of using character level

CNNs for classifying text by century of creation. After carrying out an

experiment and assessing the results, I am led to conclude that CNNs are

indeed viable for this application, especially if they get enough data.
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6 Appendix

6.1 Command Line Arguments for Weka:

!/bin/bash

java -Xmx25G -cp ~/weka/weka.jar weka.Run .Dl4jMlpClassifier -t ~/CharLevelNominal

.arff \

-S 1 -cache-mode MEMORY -early-stopping "weka.dl4j.earlystopping.EarlyStop

ping -maxEpochsNoImprovement 4 -valPercentage 0.0" -normalization "No normalizatio

n/standardization" -iterator "weka.dl4j.iterators.instance.ConvolutionInstanceIter

ator -height 1 -numChannels 1 -width 3740 -bs 1" -iteration-listener "weka.dl4j.li

stener.EpochListener -eval true -n 1" \

-layer "weka.dl4j.layers.ConvolutionLayer -nFilters 25 -mode Truncate -cud
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nnAlgoMode PREFER_FASTEST -rows 1 -columns 7 -paddingColumns 4 -paddingRows 0 -str

ideColumns 1 -strideRows 1 -nOut 10 -activation weka.dl4j.activations.ActivationRe

LU" \

-layer "weka.dl4j.layers.SubsamplingLayer -mode Truncate -eps 1.0E-8 -rows

2 -columns 2 -paddingColumns 0 -paddingRows 0 -pnorm 1 -poolingType MAX -strideCo

lumns 1 -strideRows 1" \

-layer "weka.dl4j.layers.ConvolutionLayer -nFilters 25 -mode Truncate -cud

nnAlgoMode PREFER_FASTEST -rows 7 -columns 1 -paddingColumns 4 -paddingRows 0 -str

ideColumns 1 -strideRows 1 -nOut 10 -activation weka.dl4j.activations.ActivationRe

LU" \

-layer "weka.dl4j.layers.SubsamplingLayer -mode Truncate -eps 1.0E

-8 -rows 2 -columns 2 -paddingColumns 0 -paddingRows 0 -pnorm 1 -poolingType MAX -

strideColumns 1 -strideRows 1" \

-layer "weka.dl4j.layers.ConvolutionLayer -nFilters 25 -mode Trunc

ate -cudnnAlgoMode PREFER_FASTEST -rows 7 -columns 1 -paddingColumns 4 -paddingRow

s 0 -strideColumns 1 -strideRows 1 -nOut 10 -activation weka.dl4j.activations.Acti

vationReLU" \

-layer "weka.dl4j.layers.ConvolutionLayer -nFilters 25 -mode Truncate -cud

nnAlgoMode PREFER_FASTEST -rows 7 -columns 1 -paddingColumns 4 -paddingRows 0 -str

ideColumns 1 -strideRows 1 -nOut 10 -activation weka.dl4j.activations.ActivationRe

LU" \

-layer "weka.dl4j.layers.SubsamplingLayer -mode Truncate -eps 1.0E-8 -rows

2 -columns 2 -paddingColumns 0 -paddingRows 0 -pnorm 1 -poolingType MAX -strideCo

lumns 1 -strideRows 1" \

-layer "weka.dl4j.layers.GlobalPoolingLayer -collapseDimensions fa
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lse -pnorm 2 -poolingType MAX" \

-layer "weka.dl4j.layers.DenseLayer -nOut 10 -activation weka.dl4j.activat

ions.ActivationReLU" \

-layer "weka.dl4j.layers.OutputLayer -lossFn \"weka.dl4j.lossfunctions.Los

sBinaryXENT \" -nOut 2 -activation \"weka.dl4j.activations.ActivationSigmoid \" -n

ame \"Output layer\"" \

-logConfig "weka.core.LogConfiguration -append true " \

-config "weka.dl4j.NeuralNetConfiguration -biasInit 0.0 -biasUpdater \"wek

a.dl4j.updater.Sgd -lr 0.001 -lrSchedule \\\"weka.dl4j.schedules.ConstantSchedule

-scheduleType EPOCH\\\"\" -dist \"weka.dl4j.distribution.Disabled \" -dropout \"we

ka.dl4j.dropout.Disabled \" -gradientNormalization None -gradNormThreshold 1.0 -l1

NaN -l2 NaN -minimize -algorithm STOCHASTIC_GRADIENT_DESCENT -updater \"weka.dl4j

.updater.Adam -beta1MeanDecay 0.9 -beta2VarDecay 0.999 -epsilon 1.0E-8 -lr 0.001 -

lrSchedule \\\"weka.dl4j.schedules.ConstantSchedule -scheduleType EPOCH\\\"\" -wei

ghtInit XAVIER -weightNoise \"weka.dl4j.weightnoise.Disabled \"" -numEpochs 20 -nu

mGPUs 1 -averagingFrequency 10 -prefetchSize 24 -queueSize 0 -zooModel "weka.dl4j.

zoo.CustomNet "

6.2 Preprocessing Script Written in R:

library("qdap")

library("readr")

library(dplyr)

library(stringr)

library(tm)

library(MASS)
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library(rlist)

list.save(df_3, "mylist.rds")

mylist <- list.load("mylist.rds")

#Get the file names of the texts

fileslist <- list.files(getwd(), full.names = T)

documents <- lapply(fileslist, function(x)readLines(x))

#Input the files into a dataframe

df <- lapply(documents, FUN = toString)

df <- data.frame(sapply(df,c), stringsAsFactors = FALSE)

df <- mutate(df, Target = fileslist)

colnames(df) <- c("Text", "Target")

#Remove whitespace, convert to alphanum, and remove whitespace again

df$Text <- str_replace(gsub("\\s+", " ", str_trim(df$Text)), "B", "b") %>% tolower()

df$Text <- str_replace_all(df$Text, "[^[:alnum:]]", " ")

df$Text <- str_replace(gsub("\\s+", " ", str_trim(df$Text)), "B", "b")

#Replace each character with a number

df_2 <- df_1

df_2 <- gsub("1", "_1_", df_2)

df_2 <- gsub("2", "_2_", df_2)

df_2 <- gsub("3", "_3_", df_2)

df_2 <- gsub("4", "_4_", df_2)
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df_2 <- gsub("5", "_5_", df_2)

df_2 <- gsub("6", "_6_", df_2)

df_2 <- gsub("7", "_7_", df_2)

df_2 <- gsub("8", "_8_", df_2)

df_2 <- gsub("9", "_9_", df_2)

df_2 <- gsub("0", "_10_", df_2)

df_2 <- gsub("a", "_11_", df_2)

df_2 <- gsub("b", "_12_", df_2)

df_2 <- gsub("c", "_13_", df_2)

df_2 <- gsub("d", "_14_", df_2)

df_2 <- gsub("e", "_15_", df_2)

df_2 <- gsub("f", "_16_", df_2)

df_2 <- gsub("g", "_17_", df_2)

df_2 <- gsub("h", "_18_", df_2)

df_2 <- gsub("i", "_19_", df_2)

df_2 <- gsub("i", "_19_", df_2)

df_2 <- gsub("j", "_20_", df_2)

df_2 <- gsub("k", "_21_", df_2)

df_2 <- gsub("l", "_22_", df_2)

df_2 <- gsub("m", "_23_", df_2)

df_2 <- gsub("n", "_24_", df_2)

df_2 <- gsub("o", "_25_", df_2)

df_2 <- gsub("p", "_26_", df_2)

df_2 <- gsub("q", "_27_", df_2)
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df_2 <- gsub("r", "_28_", df_2)

df_2 <- gsub("s", "_29_", df_2)

df_2 <- gsub("t", "_30_", df_2)

df_2 <- gsub("u", "_31_", df_2)

df_2 <- gsub("v", "_32_", df_2)

df_2 <- gsub("w", "_33_", df_2)

df_2 <- gsub("x", "_34_", df_2)

df_2 <- gsub("y", "_35_", df_2)

df_2 <- gsub("z", "_36_", df_2)

df_2 <- gsub(" ", "_37_", df_2)

#Fix double delimeter appearing twice

df_2 <- gsub("__", "_", df_2)

#Data frame formatting

#df$SourceFile <- gsub(".txt", " ", df$SourceFile)

df$Target <- gsub("wo", "", df$Target)

fileslist <- substr(fileslist, 1,nchar(fileslist)-1)

#To remove last element

df_3 <- df_2[-2102]

#Remove all delimeters

for (i in length(df_2)) {
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z <- max(sapply(df_3, function(x) length(x)))

x <- z - length(df_3[[i]])

y <- ""

for (j in seq(x)) {

y <- paste(y, "_", sep = "")

}

df_2[[i]] <- paste(df_2[[i]], y)

}

df_3 <- strsplit(df_2, split = "_")[]

for (m in seq(length(df_3))) {

df_4 <- df_3[[m]][-1]

df_4 <- df_4[-length(df_4)]

#df_3 <- df_3[[m]][[length()]]

write_lines(df_4, path = (paste(toString(fileslist[m]), ".txt")), append = T)

}

#Used for prior testing

document_text <- df$Text

#R needs to interpret each element of this vector to be a seperate document

document_text_source <- VectorSource(document_text)

document_text_corpus <- Corpus(document_text_source)
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frequent_terms <- freq_terms(document_text, 3000)

plot(frequent_terms)

clean_corpus <- function(corpus){

corpus <- tm_map(corpus, stripWhitespace)

corpus <- tm_map(corpus, removePunctuation)

corpus <- tm_map(corpus, content_transformer(tolower))

corpus <- tm_map(corpus, removeWords, stopwords("en"))

corpus <- tm_map(corpus, replace_ordinal)

corpus <- tm_map(corpus, replace_number)

corpus <- tm_map(corpus, replace_symbol)

return(corpus)

}

clean_corp <- clean_corpus(document_text_corpus)

clean_corp <- tm_map(clean_corp, PlainTextDocument)

clean_corp[[127]][1]

text_dtm <- DocumentTermMatrix(tm_map(clean_corpus(Corpus(VectorSource(document_text))), PlainTextDocument))

text_dtm_test <- removeSparseTerms(text_dtm, 0.95)

text_m<- mutate(data.frame(text_m), target = fileslist)

text_m <- as.matrix(text_dtm_test)

dim(text_m)
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write.matrix(text_m, file = "95-505att.csv", sep = ",")

write.csv(df, file = "18-19.csv", sep = ",")

write.list(df_3, file = "output.txt", t.name = NULL )
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