
Page 1 of 48

Investigating the effectiveness of machine learning

in predicting a double pendulum’s motion

Exam Session: May 2025

Word Count: 3803

Research question: To what extent is multiple linear regression effective in predicting the

immediate trajectory of a double pendulum given its bobs’ initial positions?

Anderson Addo
CS EE World
https://cseeworld.wixsite.com/home
27/34 (A)
May 2025

Submitter info:
Contact me at trackrays418 [at] gmail [dot] com for any questions. Also, take my EE as proof that you don't need a complicated topic to score well. :]

Page 2 of 48

Table of Contents

1. Introduction ... 3

2. Background information .. 5

2.1 Double pendulum... 5

2.2 Machine learning ... 6

2.3 Linear regression ... 7

2.4 Ordinary least squares (OLS) ... 7

2.5 General least squares (GLS) ... 9

3. Methodology ... 10

3.1 Independent variable .. 11

3.2 Dependent variable .. 11

3.3 Control variables.. 13

4. Data analysis & evaluation .. 15

5. Limitations .. 19

6. Conclusion .. 21

7. Further Scope .. 21

Bibliography ... 24

Appendices.. 26

Appendix 1: Code used to pull values from simulation ... 26

Appendix 2: Code of the program used .. 27

Appendix 3: Table of data values used ... 38

Page 3 of 48

1. Introduction

Chaos theory is an interdisciplinary area of study that deals with complex deterministic systems

that are sensitive to their initial conditions. Although predicting the long-term behavior of such

systems is impossible, and prediction itself is made harder by numerical imprecisions, they are still

extensively covered due to their prevalence and utility.

For example, the ‘butterfly effect’ – called so as its analogy suggests a butterfly’s flapping in Brazil

could cause a tornado in Texas1 – makes weather unpredictable in the long run due to its dependent

factors. Trying to predict the state of ‘chaotic’ systems thus becomes an arduous challenge,

especially when trying to make more accurate predictions for longer periods of time. However,

despite this, chaos theory is extensively studied due to its real-life applications, one of the most

notable being weather. This proves the relevance of this investigation to society.

Double pendulums are a simpler example of a chaotic system. They are constructed by attaching

one pendulum to the end of another. For small initial angles (with respect to its position at rest), it

would behave similarly to a simple pendulum. However, at larger angles, its motion grows

unpredictable due to the momentum of both pendulums interfering with each other. The angles of

both bobs are governed by a pair of second-order, non-linear differential equations. Since no closed

form solution for the angles as a function of time exists, the equations must be numerically

integrated to find the angles at an instant.

1 Lorenz, N. Edward. "Math! Science! History!" 29 December 1972. Predictability: Does the Flap of a Butterfly's

Wings In Brazil Set Off a Tornado in Texas? 13 June 2024.

Page 4 of 48

Machine learning techniques naturally lend themselves to chaos theory. Although chaotic systems

appear random over time, they are anything but. For this reason, it is still possible to make short-

term predictions with reasonable accuracy (else weather forecasts would not have existed) based

on existing data. As such, this investigation aims to answer the question: to what extent is

multiple linear regression effective in predicting the immediate trajectory of a double

pendulum given its bobs’ initial positions?

In response to the proposed research question, two hypotheses are proposed.

• Main hypothesis (𝐻0): The percentage error of the value predicted by multiple linear

regression is on average less than or equal to 50%, and reduces with the number of data

values fed. In other words, the technique is reasonably effective in predicting the immediate

trajectory of a double pendulum given its bobs’ initial positions.

• Alternative hypothesis (𝐻1): The percentage error of the value predicted by multiple linear

regression is on average greater than 50% of the latter, and does not reduce with the number

of data values fed. Thus, the technique is ineffective in predicting the immediate trajectory

of a double pendulum given its bobs’ initial positions.

Page 5 of 48

2. Background information

2.1 Double pendulum

Figure 1: Diagram of a double pendulum. Adapted from Izadgoshasb, Lim and Tang2

As depicted in Figure 1, the double pendulum in question is a double ‘simple’ pendulum, where a

simple pendulum consists of a spherical bob attached by a massless rod to a pivot. This

specification is required as double ‘compound’ pendulums are often referred to as double

pendulums, but they consist of swinging rigid bodies instead of a rod and a mass. 𝜃1 and 𝜃2 are

the angles for the first and second bobs respectively, 𝑙1 and 𝑙2 are the lengths of the two massless

rods, and 𝑚1 and 𝑚2 are the masses of the two bobs.

2 Izadgoshasb, Izad, et al. "Improving efficiency of piezoelectric based energy harvesting from human motions using

double pendulum system." Energy Conversion and Management (2019): 3. Document. 14 June 2024.

Page 6 of 48

2.2 Machine learning

Machine learning falls under the larger umbrella of artificial intelligence. It is defined by the

International Business Machines Corporation (IBM) as focusing on using data and algorithms to

allow artificial intelligence to learn as humans do, growing more accurate over time3. This broad

definition enables several techniques within machine learning, such as linear regression, logistic

regression, neural networks, and decision trees4. Each technique has its applications, advantages,

and limitations. However, to remain within the scope of this investigation, only linear regression

will be used.

Applying machine learning to chaos theory and chaotic phenomena is an extensively covered

subject. An immediate example is Ghorbani and colleagues’ application of multiple linear

regression to predict wave parameters. In their article, they employed a more nuanced approach

termed “Chaos-MLR”, or multiple linear regression accounting for characteristics of the system’s

chaotic behavior. However, many other publications on the same utilize different techniques other

than linear regression. Fan and colleagues used reservoir computing, a type of recurrent neural

network, to predict the behavior of two chaotic systems, Kolmogorov-Sinai entropy and the

complex Ginzberg-Landau equation. Similarly, Pathak and his team made use of reservoir

computing to calculate important attributes of chaotic systems, such as Lyapunov exponents.

3 IBM. What Is Machine Learning (ML)? | IBM. n.d. 14 June 2024.

4 UC Berkeley School of Information. What Is Machine Learning (ML)? - I School Online. 26 June 2020. 14 June

2024.

Page 7 of 48

2.3 Linear regression

Linear regression, as implied by the name, takes input data (the independent variable) to estimate

the coefficients of the equation of a line. The output of the equation gives the predicted value of

the dependent variable. Given the nature of the double pendulum, there are two possible sets of

independent variables: 𝜃1, 𝜃2 and 𝑥1, 𝑥2, 𝑦1, 𝑦2 (the coordinates). As using all four coordinates to

predict each of the next four would add unneeded complexity, the angles will be the independent

variables. Thus, multiple linear (more than one independent variable) regression is required on the

two independent variables (𝜃1 and 𝜃2), and the former dependent variable (the predicted value).

2.4 Ordinary least squares (OLS)

Ordinary least squares (OLS) models the relationship between two or more dependent variables

and one independent variable by fitting a linear equation to the given data. Both simple and

multiple linear regression have similar steps, thus it will not be necessary to explain both.

The simple linear equation for this method5 takes the form:

𝑦 = 𝑋𝛽 + 𝜖𝑖

where

• 𝑌 is an 𝑛 × 1 vector of dependent variable values,

5 Soch, Joram. Ordinary least squares for multiple linear regression | The Book of Statistical Proofs. 27 September

2019. 16 June 2024.

Page 8 of 48

• 𝑋 is an 𝑛 × 𝑝 matrix with 𝑛 rows of input data and 𝑝 columns of independent variables,

• 𝛽 is a 𝑝 × 1 vector of parameters, and

• 𝜖𝑖 is an 𝑛 × 1 vector of errors, such that 𝜖𝑖 is independent and identically distributed in a

normal distribution of mean 0 and variance 𝜎2 (𝜖𝑖 ~
𝑖.𝑖.𝑑

 𝒩(0, 𝜎2))

Least squares regression in general optimizes the parameters by minimizing the squared ‘residuals’

(differences between the actual value and that predicted by the equation). In the multiple linear

case, this is done by solving the equation:

𝑋𝑇𝑋𝛽 = 𝑋𝑇𝑦

Solving these results in the least squares estimates of the parameters:

𝛽̂ = (𝑋𝑇𝑋)−1(𝑋𝑇𝑌)

This equation yields the estimated parameters that minimize the sum of squared residuals, hence

the moniker ‘least squares’. However, it is important to note that the ordinary least squares method

assumes little to no correlation between the independent variables and thus could be inaccurate. It

also assumes homoskedasticity, or that the variance of the errors is constant, amongst other things6.

This is why the general least squares (GLS) method will also be used in this investigation.

6 Frost, Jim. 7 Classical Assumptions of Ordinary Least Squares (OLS) Linear Regression - Statistics By Jim. n.d. 16

June 2024.

Page 9 of 48

2.5 General least squares (GLS)

Generalized least squares (GLS) is an extension of the ordinary least squares method for multiple

linear regression. GLS is used when the assumptions of OLS are violated and do not hold,

specifically when the errors are heteroskedastic (the errors do not have a constant variance) or

correlated.

The GLS regression linear equation is the same as that of OLS, namely:

𝑦 = 𝑋𝛽 + 𝜖

The chief difference between ordinary and general least squares is that GLS accounts for the

structure of the error terms. In GLS, one assumes the error vector ϵ to follow a multivariate normal

distribution with a mean of zero and covariance matrix 𝛴; in other words, 𝜖 ∼ 𝑁(0, 𝛴).

The GLS estimator of the parameters is given by:

𝛽̂ = (𝑋𝑇𝛴 − 1𝑋) − 1𝑋𝑇𝛴 − 1𝑦

𝛽̂ = (𝑋𝑇Σ−1𝑋)−1𝑋𝑇Σ−1𝑦

where Σ−1 is the inverse of the covariance matrix of errors. Again, this formula yields the

parameter estimates that minimize the generalized sum of the squared residuals.

As mentioned, GLS is more efficient than OLS when the errors are heteroskedastic or correlated,

but it requires knowledge of the error covariance matrix 𝛴. In practice, 𝛴 is often unknown and

must be estimated from the available data, extending to the method of feasible generalized least

squares (FGLS).

Page 10 of 48

3. Methodology

To carry out the investigation, I had to acquire a data set of a double pendulum’s motion, containing

the angles of both bobs and the timestamp for the given data set. For this, I used an online

simulation produced by the website myPhysicsLab7 to generate a comma-delimited (CSV) file of

the timestamps and angles of each bob. The code used to retrieve the values from the simulation

can be found in Appendix 1. However, despite the simplicity of the method, problems arose in the

setup.

The simulation I used allows for customization of every aspect, from the masses of the bobs to the

acceleration due to gravity, as well as the time increment between frames of the simulation. A

lower time increment would result in more data points but could increase the time taken to train

the model, depending on the duration for which data was collected. The reason for this is that the

simulation both renders the double pendulum and prints out its bobs’ angles for each frame,

meaning the total number of data points would be given by

𝑁𝑜. 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 = 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 × 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

where the time step and duration are given in seconds.

As mentioned on the simulation’s website, the system is chaotic for large motions (i.e. large initial

angles), but a simple linear motion for small ones (i.e. small angles). Thus, if linear regression is

to predict its motion accurately, numerous data points are required.

7 Neumann, Erik. “myPhysicsLab Double Pendulum.” myPhysicsLab. 19 Dec. 2023. Web. 06 Dec. 2024.

Page 11 of 48

While performing trial and error with the given time controls, I found that increasing the time step

allowed for longer durations but made it harder to trace the pendulum’s motion between frames –

even the simulation broke for large initial angles at a 0.5-second time step. Smaller time steps had

the opposite problem. I finally decided to use a time step of 0.1 seconds with a total duration of 30

seconds for each set of initial angles, as that would provide enough data points for a human to trace

out its motion while offering a reasonably long duration.

The program used in the investigation is available under Appendix 1. I used the Apache Commons

library’s implementation of OLS and GLS linear regression; further information about the

specifications is listed under the control variables.

3.1 Independent variable

The independent variable will be the number of data values fed to the machine learning algorithm

– in this case, the linear regression algorithms. Each data value is a floating-point (decimal) number

of fixed length. The number of data values fed will vary from 50, 100, 150, 200, 250, to finally

300.

3.2 Dependent variable

The dependent variable will be the percentage error of the value predicted by the linear regression

algorithm (both ordinary and general least squares, or OLS and GLS). This will be calculated

through a sequence of steps.

Page 12 of 48

First, the initial data values are passed to the linear regression algorithm, through which the

parameters and residuals of the equation are found. The predicted value is then found by

summation of the residual and product of the variables and their parameters. The percentage error

is then found by dividing the difference between the actual and predicted value over the actual

value.

Page 13 of 48

3.3 Control variables

Variable Reason for controlling Specified value Method of

controlling

Implementation of

linear regression

used

Different implementations

may calculate the parameters

or residuals differently,

introducing errors and thus

making comparisons

meaningless.

Apache Commons

Math library, version

3.6.1, from Maven

Using the same

version of the library

for the entire

program.

Simulation used Different simulations may

have varying levels of

accuracy in which they

simulate the double

pendulum’s motion,

preventing fair comparisons.

myPhysicsLab’s

double pendulum

simulation

Using the same

simulation when

collecting the initial

data.

Differential

equation-solving

method

Different methods have

different accuracies,

preventing fair comparisons.

Runge-Kutta method Using the same

differential equation-

solving method when

collecting the initial

data.

Time step In solving the differential

equations required to find the

motion of a double

A timestep of 0.1 𝑠 Using the same time

step when collecting

the initial data.

Page 14 of 48

pendulum, a time step is set.

A smaller time step can result

in more accurate values but

increases the number of

values recorded for the same

time duration.

System specifications Exact implementations of

operations vary based on the

architectures of the CPU and

GPU. Changing these during

the experiment may affect

the results, thus preventing

fair comparisons.

CPU: i9-13980HX

RAM: 32 GB

GPU: NVIDIA RTX

4080

Operating System:

Windows 11 Home

Using the same

system when

collecting the initial

data.

Initial angle The kinematics of the double

pendulum varies with the

initial conditions, namely the

initial angle of both bobs.

𝜋

4
 radians Using the same initial

angle when running

the code to collect the

initial data, for both

bobs.

Page 15 of 48

4. Data analysis & evaluation

Figure 2: Screenshot of the program's output, taken by me

With the program already providing me with the percentage errors for each independent variable

value, all that was left to do was plot them on a graph. The results can be seen in Figures 3 and 4.

A truncated table of the data values used can be found in Table 1; the entire table is provided in

Appendix 3.

Page 16 of 48

Data value no. Angle 1 Angle 2

1 0.785 0.785

2 0.751 0.785

3 0.654 0.778

4 0.509 0.748

5 0.341 0.667

6 0.177 0.514

7 0.04 0.28

8 -0.063 -0.016

9 -0.152 -0.325

10 -0.255 -0.588

11 -0.377 -0.775

12 -0.503 -0.885

13 -0.615 -0.927

14 -0.694 -0.918

15 -0.728 -0.876

Table 1: Truncated table of data values used to train linear regression algorithm

Page 17 of 48

Figure 3: Graph of percentage error against the number of initial values fed for OLS regression

Figure 4: Graph of percentage error against the number of initial values fed for GLS regression

y = -0.0108x + 137.7
R² = 6E-05

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Percentage
error

Number of initial values fed

Ordinary least squares (OLS) linear regression

y = -0.0112x + 142.34
R² = 6E-05

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Percentage
error

Number of initial values fed

General least squares (GLS) linear regression

Page 18 of 48

An initial observation of the graphs shows no correlation between the number of initial values fed

to the algorithm (both OLS and GLS) and the percentage error. Proof of this is the low 𝑅2 value,

of only 6 × 10−5 (= 0.00006). This means that the graph above shows that the percentage error

from the OLS regression model is not affected by the number of starting points for data. The

percentage errors found show great variance, ranging from beyond 300% to close to 50%.

Furthermore, the regression line has a very shallow slope (with a gradient of 0.0108). This made

me think that factors beyond the dataset size, such as data quality, feature selection, or violations

of OLS’ assumptions could be influencing the model’s performance.

However, the GLS regression model did not perform any better, having a similar distribution of

values compared to OLS. It also has an 𝑅2 value of 6 × 10−5, meaning virtually no correlation

between the number of data values fed and the percentage error found. A possible explanation for

the unsuccessful outcome could be that the randomness of a double pendulum’s motion prevents

it from being predicted with simple techniques like linear regression. Even if the double pendulum

started at a small enough angle, such that it oscillated like a simple pendulum, the relationship is

still unlikely to be linear. Klinkachorn and Parmar, while investigating the effectiveness of

different machine learning techniques in achieving the same, used a linear regression model with

a polynomial feature map. Considering that this model managed to predict the kinematics for a

double pendulum well at small angles, the underlying relationship is not linear.

An interesting feature to note about Figures 3 and 4 is the presence of peaks at 100 and 250 initial

values fed, conveying that the percentage error was highest for those. The graphs produced already

rule out any correlation between the independent and dependent variables, so there is no

connection between both. However, a reason for these peaks can be found by considering the

angles at that time. Considering that the pendulum moves chaotically for large angles, the chosen

Page 19 of 48

initial angle –
𝜋

4
 radians – may therefore be too high for linear regression to be able to predict. A

solution for this would either be to reduce the initial angle to a value like
𝜋

6
 radians or use a more

sophisticated algorithm.

In general, other machine learning techniques might perform better than standard linear regression.

In the same paper by Klinkachorn and Parmar, a long short-term memory (LSTM) neural network

performed well for both chaotic and periodic (like a simple pendulum) motion, with minimal

error8. As for the effectiveness of linear regression, however, it is completely ineffective.

5. Limitations

There were several limitations to this investigation. Firstly, the training dataset’s quality: being

sourced from a simulation rather than a real-life experiment, inaccuracies can arise for several

reasons. First is the fact that numerically solving differential equations is bound to have some

errors. Although this can be solved partially by increasing the number of terms, some errors will

always remain. Furthermore, solving to a greater number of terms increases the computational

cost9, making it less feasible depending on the scenario. Even assuming that the differential

equation solver is fully accurate, limitations are brought on by the system itself. A simulation does

not account for environmental factors such as air resistance, slight changes in the Earth’s gravity

based on location, or even friction between the joints of the double pendulum. The build of the

8 Klinkachorn, Sirapop and Jupinder Parmar. "Evaluating Current Machine Learning Techniques On Predicting

Chaotic Systems." CS 229 projects, Spring 2019 edition. 2019. 2-5. Document.

9 Harder, Douglas Wilhelm. "Error analysis of Euler’s, Heun’s and the 4th-order Runge-Kutta method." n.d. ECE

204: Course home | Department of Electrical and Computer Engineering | University of Waterloo. 3 December

2024.

Page 20 of 48

double pendulum also affects its kinematics. In the simulation, the rods are light compared to the

bobs of the pendulum; however, this may not always be the case with physical double pendulums.

For example, double compound pendulums are made of two rods, whose masses are evenly

distributed over their lengths10, and thus would swing differently than the standard double

pendulum.

Secondly, I faced difficulties in understanding the concept of covariance matrices, used in general

least squares regression. Consequently, I could not manually verify the covariance matrices used

or perform sample calculations to ensure the code was bug-free. This hampered the accuracy of

this investigation, as I was more reliant on my programming knowledge to verify the same. If I

had received guidance or otherwise managed to understand matrices and statistics, I could have

calculated the covariance matrix for a small set of training data as a trial and then compared it with

the calculated matrix to ensure the code worked as intended.

The relationship between 𝜃1 and 𝜃2 (the angles of the two bobs; refer to Figure 1) is also

complicated to describe due to the chaotic nature of the system. Hence, finding the correlation and

covariance is tricky, preventing any meaningful relationship from being established. This hampers

one when investigating the behavior of the double pendulum, as this information would be useful.

Fourthly, another factor to consider would be the initial angle. For large angles, the double

pendulum behaves chaotically at first, due to having two degrees of freedom; as a result, it becomes

harder to predict. However, for smaller initial angles, it oscillates like a simple pendulum. As this

is far simpler to describe and predict, it is possible linear regression would have been more

successful for such cases.

10 christian. The double compound pendulum. Blog, 15 Apr. 2020. Web. 03 Dec. 2024.

Page 21 of 48

6. Conclusion

This paper investigated the efficacy of using multiple linear regression, a machine learning

algorithm, to predict the kinematics of a double pendulum using its current position, with the past

motion fed to it as training data. The experiment used Apache Commons’ implementation of

ordinary and general least squares (OLS and GLS) multiple linear regression, trained on data from

a simulation from the website myPhysicsLab.

From the results, it can be determined that the alternative hypothesis 𝐻1 was correct: the percentage

error is on average greater than 50% and does not reduce with the number of data values fed, for

both OLS and GLS regression alike. The gradient and 𝑅2 values for the lines of best fit for OLS

and GLS regression are both approximately zero, showing no clear trend between percentage error

and the number of data values used. Furthermore, most points fall above 50%, with the maximum

error in both cases being close to 325%.

7. Further Scope

One way to extend this investigation would be to use data collected from a real-life experiment,

rather than a simulation – however, this raises practical issues. Collecting data itself would be a

challenge, as each method of doing so has its limitations. For instance, using motion tracking

software to find the angles from a recording of the double pendulum may yield inaccurate results

if the frames in between are blurry. If the camera's refresh rate is not high enough, this may end up

happening. I experienced this while trying to collect data for my investigation; my first plan was

to use angles measured from a recording using said software, but the frames during periods of

Page 22 of 48

chaotic motion were too blurred. In addition, external factors may introduce more chaos to the

system, making it less predictable.

Second, as mentioned earlier, machine learning algorithms – or even deep learning – may be better

suited for this purpose. For instance, Li utilized random forest regression in predicting the values

produced by the Lorenz system, a set of ordinary differential equations with chaotic solutions for

certain parameters11, just as the double pendulum is a chaotic system for high enough initial angles.

Similarly, Freibergs and colleagues modeled the motion of a double pendulum using a long short-

term memory (LSTM) neural network12, finding that the LSTM model performed better than an

ODE-based approach. However, it is important to note that not all machine or deep learning types

may be suitable for this purpose. Steger and colleagues evaluated that physics-informed neural

networks (PINNs) – a form of neural network that combines data-driven learning with information

about the underlying physics – “cheated” in predicting the double pendulum’s kinematics, either

adjusting the initial conditions or slightly violating the laws of physics13. Implementing these

algorithms also requires a solid understanding of the theory behind them to avoid mistakes in their

implementation. Neural networks and other deep learning techniques are particularly complex,

hampering their use. Care must also be taken in the hyperparameters involved, such as the size of

training data, number of epochs, or number of batches.

Third, increasing the number of inputs to the linear regression model may benefit it. For example,

offering it the past two sets of angles – rather than just one – could allow it to understand the

11 Li, Yuxuan. "Predicting Time Series of the Lorenz Chaotic System Using Random Forest Regression." 2023 8th

International Conference on Intelligent Computing and Signal Processing (ICSP) (2023). Document.
12 Freibergs, Reinis, et al. "LSTM Rollout Curriculum Using Double Pendulum." International Journal of Machine

Learning (2024): 3-5. Document.
13 Steger, Sophie, Franz M. Rohrhofer and Bernhard C Geiger. "How PINNs cheat: Predicting chaotic motion of a

double pendulum." The Symbiosis of Deep Learning and Differential Equations II (2023): 3-4. Document.

Page 23 of 48

pendulum's motion better. This would result in possibly more accurate predictions. Offering the

initial angles along with the most recent angles may also benefit, as knowing the initial angle helps

understand whether to expect chaotic or periodic motion. However, overfitting could become an

issue, where the model fits closely or exactly to its training data and listens too closely to the noise

present14. Of course, this can be extended to increase the number of inputs passed to a more

sophisticated model (such as an LSTM neural network), and other information like the time

elapsed (from when the pendulum was released) can be passed. However, there is no guarantee

that these will lead to better – or even sensible – predictions.

14 IBM. What is overfitting? | IBM. n.d. 04 December 2024.

Page 24 of 48

Bibliography

Fan, Huawei, et al. "Long-term predictions of chaotic systems with machine learning." Physical Review

Research 30 March 2020. Document.

Freibergs, Reinis, et al. "LSTM Rollout Curriculum Using Double Pendulum." International Journal of

Machine Learning (2024): 3-5. Document.

Frost, Jim. 7 Classical Assumptions of Ordinary Least Squares (OLS) Linear Regression - Statistics By Jim.

n.d. 16 June 2024.

Ghorbani, M. A., et al. "Augmented chaos-multiple linear regression approach for prediction of wave

parameters." Engineering Science and Technology, an International Journal 24 December 2016.

Document.

Harder, Douglas Wilhelm. "Error analysis of Euler’s, Heun’s and the 4th-order Runge-Kutta method." n.d.

ECE 204: Course home | Department of Electrical and Computer Engineering | University of

Waterloo. 3 December 2024.

IBM. What Is Machine Learning (ML)? | IBM. n.d. 14 June 2024.

—. What is overfitting? | IBM. n.d. 04 December 2024.

Izadgoshasb, Izad, et al. "Improving efficiency of piezoelectric based energy harvesting from human

motions using double pendulum system." Energy Conversion and Management (2019): 3.

Document. 14 June 2024.

Klinkachorn, Sirapop and Jupinder Parmar. "Evaluating Current Machine Learning Techniques On

Predicting Chaotic Systems." CS 229 projects, Spring 2019 edition. 2019. 2-5. Document.

Page 25 of 48

Li, Yuxuan. "Predicting Time Series of the Lorenz Chaotic System Using Random Forest Regression." 2023

8th International Conference on Intelligent Computing and Signal Processing (ICSP) (2023).

Document.

Lorenz, N. Edward. "Math! Science! History!" 29 December 1972. Predictability: Does the Flap of a

Butterfly's Wings In Brazil Set Off a Tornado in Texas? 13 June 2024.

Neumann, Erik. myPhysicsLab Double Pendulum. 19 December 2023. 16 June 2024.

Pathak, Jaideep, et al. "Using machine learning to replicate chaotic attractors and calculate Lyapunov

exponents from data." Chaos 6 December 2017. Document.

Soch, Joram. Ordinary least squares for multiple linear regression | The Book of Statistical Proofs. 27

September 2019. 16 June 2024.

Steger, Sophie, Franz M. Rohrhofer and Bernhard C Geiger. "How PINNs cheat: Predicting chaotic motion

of a double pendulum." The Symbiosis of Deep Learning and Differential Equations II (2023): 3-

4. Document.

UC Berkeley School of Information. What Is Machine Learning (ML)? - I School Online. 26 June 2020. 14

June 2024.

christian. The double compound pendulum. Blog, 15 Apr. 2020. Web. 03 Dec. 2024.

Neumann, Erik. “myPhysicsLab Double Pendulum.” myPhysicsLab. 19 Dec. 2023. Web. 06 Dec. 2024.

Page 26 of 48

Appendices

Appendix 1: Code used to pull values from simulation

Angle 1

SIM_VARS.ANGLE_1 = 0.78539816339744830961566084581988;

SIM_VARS.ANGLE_2 = 0.78539816339744830961566084581988;

var angle1 = sim.getVarsList().getVariable('ANGLE_1');

var printVar = (v) => v.getValue().toFixed(3);

var memo = new GenericMemo(function(){

 println(printVar(angle1)+','

)});

simRun.addMemo(memo);

memo.memorize();

Angle 2

SIM_VARS.ANGLE_1 = 0.78539816339744830961566084581988;

SIM_VARS.ANGLE_2 = 0.78539816339744830961566084581988;

var angle2 = sim.getVarsList().getVariable('ANGLE_2');

var printVar = (v) => v.getValue().toFixed(3);

var memo = new GenericMemo(function(){

Page 27 of 48

 println(printVar(angle2)+','

)});

simRun.addMemo(memo);

memo.memorize();

Appendix 2: Code of the program used

package _EEProject;

import org.apache.commons.math3.stat.regression.OLSMultipleLinearRegression;

import org.apache.commons.math3.linear.RealMatrix;

import org.apache.commons.math3.stat.correlation.Covariance;

import org.apache.commons.math3.stat.regression.AbstractMultipleLinearRegression;

import org.apache.commons.math3.stat.regression.GLSMultipleLinearRegression;

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Arrays;

import java.util.Scanner;

public class Main {

 static class CovMatrix extends Covariance {

 public double[][] covarianceMatrix(double[][] data) {

Page 28 of 48

 // Transpose the data matrix to calculate the covariance of predictors (columns)

 double[][] transposed = new double[data[0].length][data.length];

 for (int i = 0; i < data.length; i++) {

 for (int j = 0; j < data[0].length; j++) {

 transposed[j][i] = data[i][j];

 }

 }

 // Compute covariance matrix for predictors

 double[][] covMatrix = computeCovarianceMatrix(transposed).getData();

 return covMatrix;

 }

 }

 static double[][] readData(File file1, File file2, int len) {

 double[][] arr = new double[len][2];

 try (Scanner sc1 = new Scanner(file1); Scanner sc2 = new Scanner(file2)) {

 sc1.useDelimiter(",");

 sc2.useDelimiter(",");

 int i = 0;

 while (sc1.hasNext()) {

 String temp = sc1.next();

Page 29 of 48

 arr[i++][0] = Double.parseDouble(temp);

 }

 i = 0;

 while (sc2.hasNext()) {

 String temp = sc2.next();

 arr[i++][1] = Double.parseDouble(temp);

 }

 }

 catch (FileNotFoundException e) {

 e.printStackTrace();

 }

 return arr;

 }

 static double[] getAngles(double[][] x, int n, int len) {

 double[] vals = new double[len];

 for (int i = 0; i < len; i++) {

 vals[i] = x[i][n];

 }

 return vals;

 }

Page 30 of 48

 static double[][] copyArrayRange(double[][] x, int rows) {

 double[][] arr = new double[rows][2];

 for (int i = 0; i < rows; i++) {

 arr[i][0] = x[i][0];

 arr[i][1] = x[i][1];

 }

 return arr;

 }

 static double estimateValue(AbstractMultipleLinearRegression r, double[] x, int n) {

 double estimatedValue = 0;

 double[] beta = r.estimateRegressionParameters();

 double[] residuals = r.estimateResiduals();

 for (int i = 0; i < x.length; i++) {

 estimatedValue += (beta[i] * x[i]);

 }

 estimatedValue += residuals[n-1];

Page 31 of 48

 return estimatedValue;

 }

 public static void main(String[] args) {

 double[][] rawData = readData(new File("pi by 4 angle 1 values.csv"), new File("pi by 4 angle 2

values.csv"), 301);

 double[][] initAngles = Arrays.copyOf(rawData, 300);

 double[][] finalAngles = Arrays.copyOfRange(rawData, 1, 301);

 System.out.println("OLS % acacuracies: \n");

 // OLS Regression models for 50 values

 OLSMultipleLinearRegression ols50Angle1 = new OLSMultipleLinearRegression();

 ols50Angle1.newSampleData(getAngles(finalAngles, 0, 50), copyArrayRange(initAngles, 50));

 // OLS Regression models for 100 values

 OLSMultipleLinearRegression ols100Angle1 = new OLSMultipleLinearRegression();

 ols100Angle1.newSampleData(getAngles(finalAngles, 0, 100), copyArrayRange(initAngles, 100));

 // OLS Regression models for 150 values

 OLSMultipleLinearRegression ols150Angle1 = new OLSMultipleLinearRegression();

Page 32 of 48

 ols150Angle1.newSampleData(getAngles(finalAngles, 0, 150), copyArrayRange(initAngles, 150));

 // OLS Regression models for 200 values

 OLSMultipleLinearRegression ols200Angle1 = new OLSMultipleLinearRegression();

 ols200Angle1.newSampleData(getAngles(finalAngles, 0, 200), copyArrayRange(initAngles, 200));

 // OLS Regression models for 250 values

 OLSMultipleLinearRegression ols250Angle1 = new OLSMultipleLinearRegression();

 ols250Angle1.newSampleData(getAngles(finalAngles, 0, 250), copyArrayRange(initAngles, 250));

 // OLS Regression models for 300 values

 OLSMultipleLinearRegression ols300Angle1 = new OLSMultipleLinearRegression();

 ols300Angle1.newSampleData(getAngles(finalAngles, 0, 300), copyArrayRange(initAngles, 300));

 // % error for OLS for 50 values

 System.out.println(

 (estimateValue(ols50Angle1, initAngles[49], 50) - finalAngles[49][0])

 / finalAngles[49][0] * 100

);

 // % error for OLS for 100 values

 System.out.println(

 (estimateValue(ols100Angle1, initAngles[99], 100) - finalAngles[99][0])

Page 33 of 48

 / finalAngles[99][0] * 100

);

 // % error for OLS for 150 values

 System.out.println(

 (estimateValue(ols150Angle1, initAngles[149], 150) - finalAngles[149][0])

 / finalAngles[149][0] * 100

);

 // % error for OLS for 200 values

 System.out.println(

 (estimateValue(ols200Angle1, initAngles[199], 200) - finalAngles[199][0])

 / finalAngles[199][0] * 100

);

 // % error for OLS for 250 values

 System.out.println(

 (estimateValue(ols250Angle1, initAngles[249], 250) - finalAngles[249][0])

 / finalAngles[249][0] * 100

);

 // % error for OLS for 300 values

 System.out.println(

Page 34 of 48

 (estimateValue(ols300Angle1, initAngles[299], 300) - finalAngles[299][0])

 / finalAngles[299][0] * 100

);

 CovMatrix cm = new CovMatrix();

 // GLS Regression models for 50 values

 GLSMultipleLinearRegression gls50Angle1 = new GLSMultipleLinearRegression();

 gls50Angle1.newSampleData(getAngles(finalAngles, 0, 50), copyArrayRange(initAngles, 50),

cm.covarianceMatrix(copyArrayRange(initAngles, 50)));

 // GLS Regression models for 100 values

 GLSMultipleLinearRegression gls100Angle1 = new GLSMultipleLinearRegression();

 gls100Angle1.newSampleData(getAngles(finalAngles, 0, 100), copyArrayRange(initAngles, 100),

cm.covarianceMatrix(copyArrayRange(initAngles, 100)));

 // GLS Regression models for 150 values

 GLSMultipleLinearRegression gls150Angle1 = new GLSMultipleLinearRegression();

 gls150Angle1.newSampleData(getAngles(finalAngles, 0, 150), copyArrayRange(initAngles, 150),

cm.covarianceMatrix(copyArrayRange(initAngles, 150)));

 // GLS Regression models for 200 values

 GLSMultipleLinearRegression gls200Angle1 = new GLSMultipleLinearRegression();

Page 35 of 48

 gls200Angle1.newSampleData(getAngles(finalAngles, 0, 200), copyArrayRange(initAngles, 200),

cm.covarianceMatrix(copyArrayRange(initAngles, 200)));

 // GLS Regression models for 250 values

 GLSMultipleLinearRegression gls250Angle1 = new GLSMultipleLinearRegression();

 gls250Angle1.newSampleData(getAngles(finalAngles, 0, 250), copyArrayRange(initAngles, 250),

cm.covarianceMatrix(copyArrayRange(initAngles, 250)));

 // GLS Regression models for 300 values

 GLSMultipleLinearRegression gls300Angle1 = new GLSMultipleLinearRegression();

 gls300Angle1.newSampleData(getAngles(finalAngles, 0, 300), copyArrayRange(initAngles, 300),

cm.covarianceMatrix(copyArrayRange(initAngles, 300)));

 System.out.println("\nGLS % acacuracies: \n");

 System.out.println(gls300Angle1.estimateRegressionParameters().length);

 // % error for GLS for 50 values

 System.out.println(

 (estimateValue(gls50Angle1, initAngles[49], 50) - finalAngles[49][0])

 / finalAngles[49][0] * 100

);

 // % error for GLS for 100 values

Page 36 of 48

 System.out.println(

 (estimateValue(gls100Angle1, initAngles[99], 100) - finalAngles[99][0])

 / finalAngles[99][0] * 100

);

 // % error for GLS for 150 values

 System.out.println(

 (estimateValue(gls150Angle1, initAngles[149], 150) - finalAngles[149][0])

 / finalAngles[149][0] * 100

);

 // % error for GLS for 200 values

 System.out.println(

 (estimateValue(gls200Angle1, initAngles[199], 200) - finalAngles[199][0])

 / finalAngles[199][0] * 100

);

 // % error for GLS for 250 values

 System.out.println(

 (estimateValue(gls250Angle1, initAngles[249], 250) - finalAngles[249][0])

 / finalAngles[249][0] * 100

);

Page 37 of 48

 // % error for GLS for 300 values

 System.out.println(

 (estimateValue(gls300Angle1, initAngles[299], 300) - finalAngles[299][0])

 / finalAngles[299][0] * 100

);

 }

}

Page 38 of 48

Appendix 3: Table of data values used

Data value

no.

Angle 1 Angle 2

1 0.785 0.785

2 0.751 0.785

3 0.654 0.778

4 0.509 0.748

5 0.341 0.667

6 0.177 0.514

7 0.04 0.28

8 -0.063 -0.016

9 -0.152 -0.325

10 -0.255 -0.588

11 -0.377 -0.775

12 -0.503 -0.885

13 -0.615 -0.927

14 -0.694 -0.918

15 -0.728 -0.876

16 -0.708 -0.812

17 -0.633 -0.73

18 -0.51 -0.631

19 -0.354 -0.504

20 -0.184 -0.34

21 -0.02 -0.134

22 0.129 0.104

23 0.261 0.348

24 0.381 0.569

25 0.49 0.747

26 0.581 0.874

Page 39 of 48

27 0.643 0.951

28 0.669 0.983

29 0.656 0.971

30 0.604 0.914

31 0.522 0.808

32 0.419 0.648

33 0.304 0.439

34 0.18 0.196

35 0.042 -0.052

36 -0.116 -0.273

37 -0.287 -0.452

38 -0.453 -0.589

39 -0.593 -0.693

40 -0.689 -0.777

41 -0.731 -0.846

42 -0.717 -0.898

43 -0.653 -0.922

44 -0.55 -0.903

45 -0.424 -0.824

46 -0.296 -0.67

47 -0.183 -0.436

48 -0.091 -0.139

49 0.001 0.172

50 0.122 0.436

51 0.276 0.623

52 0.443 0.731

53 0.599 0.778

54 0.718 0.79

55 0.778 0.789

56 0.772 0.785

Page 40 of 48

57 0.699 0.779

58 0.571 0.757

59 0.409 0.698

60 0.24 0.575

61 0.089 0.374

62 -0.029 0.101

63 -0.122 -0.208

64 -0.218 -0.493

65 -0.333 -0.711

66 -0.458 -0.851

67 -0.575 -0.919

68 -0.667 -0.931

69 -0.717 -0.901

70 -0.718 -0.845

71 -0.664 -0.768

72 -0.56 -0.673

73 -0.416 -0.555

74 -0.251 -0.403

75 -0.084 -0.211

76 0.072 0.016

77 0.212 0.258

78 0.338 0.488

79 0.454 0.681

80 0.554 0.826

81 0.627 0.826

82 0.666 0.922

83 0.666 0.972

84 0.626 0.98

85 0.553 0.943

86 0.455 0.858

Page 41 of 48

87 0.344 0.719

88 0.226 0.527

89 0.097 0.291

90 -0.052 0.038

91 -0.219 -0.199

92 -0.389 -0.396

93 -0.543 -0.546

94 -0.66 -0.658

95 -0.725 -0.746

96 -0.733 -0.817

97 -0.686 -0.874

98 -0.595 -0.91

99 -0.474 -0.911

100 -0.342 -0.859

101 -0.22 -0.737

102 -0.12 -0.535

103 -0.032 -0.259

104 0.075 0.055

105 0.215 0.344

106 0.378 0.564

107 0.54 0.703

108 0.675 0.772

109 0.76 0.794

110 0.781 0.794

111 0.735 0.788

112 0.627 0.78

113 0.475 0.764

114 0.305 0.72

115 0.144 0.624

116 0.011 0.455

Page 42 of 48

117 -0.091 0.21

118 -0.184 -0.089

119 -0.291 -0.388

120 -0.413 -0.635

121 -0.534 -0.805

122 -0.635 -0.901

123 -0.701 -0.935

124 -0.72 -0.921

125 -0.686 -0.874

126 -0.601 -0.805

127 -0.473 -0.715

128 -0.316 -0.603

129 -0.149 -0.462

130 0.012 -0.283

131 0.159 -0.068

132 0.293 0.17

133 0.415 0.404

134 0.522 0.61

135 0.607 0.772

136 0.659 0.886

137 0.672 0.954

138 0.644 0.979

139 0.581 0.962

140 0.49 0.898

141 0.383 0.782

142 0.269 0.61

143 0.146 0.387

144 0.008 0.133

145 -0.152 -0.117

146 -0.323 -0.332

Page 43 of 48

147 -0.487 -0.499

148 -0.621 -0.623

149 -0.709 -0.715

150 -0.74 -0.789

151 -0.713 -0.849

152 -0.636 -0.893

153 -0.523 -0.909

154 -0.392 -0.881

155 -0.262 -0.789

156 -0.151 -0.62

157 -0.061 -0.372

158 0.034 -0.067

159 0.16 0.24

160 0.314 0.492

161 0.478 0.664

162 0.626 0.759

163 0.732 0.796

164 0.779 0.8

165 0.759 0.793

166 0.675 0.783

167 0.538 0.769

168 0.372 0.737

169 0.204 0.663

170 0.057 0.523

171 -0.057 0.308

172 -0.151 0.027

173 -0.252 -0.277

174 -0.369 -0.547

175 -0.491 -0.748

176 -0.6 -0.873

Page 44 of 48

177 -0.679 -0.93

178 -0.716 -0.934

179 -0.702 -0.9

180 -0.636 -0.838

181 -0.523 -0.755

182 -0.377 -0.651

183 -0.214 -0.518

184 -0.05 -0.351

185 0.103 -0.147

186 0.243 0.084

187 0.372 0.32

188 0.487 0.536

189 0.582 0.712

190 0.646 0.843

191 0.673 0.929

192 0.659 0.972

193 0.607 0.972

194 0.524 0.928

195 0.421 0.834

196 0.309 0.684

197 0.192 0.478

198 0.062 0.231

199 -0.088 -0.027

200 -0.256 -0.261

201 -0.426 -0.447

202 -0.575 -0.585

203 -0.683 -0.684

204 -0.737 -0.761

205 -0.732 -0.824

206 -0.673 -0.873

Page 45 of 48

207 -0.571 -0.901

208 -0.443 -0.893

209 -0.308 -0.829

210 -0.187 -0.692

211 -0.09 -0.475

212 -0.001 -0.187

213 0.11 0.127

214 0.254 0.406

215 0.416 0.611

216 0.571 0.735

217 0.695 0.792

218 0.767 0.806

219 0.774 0.8

220 0.714 0.789

221 0.596 0.774

222 0.439 0.748

223 0.268 0.692

224 0.11 0.579

225 -0.019 0.394

226 -0.119 0.136

227 -0.216 -0.163

228 -0.327 -0.45

229 -0.448 -0.679

230 -0.563 -0.833

231 -0.653 -0.915

232 -0.705 -0.939

233 -0.71 -0.92

234 -0.663 -0.869

235 -0.568 -0.793

236 -0.434 -0.696

Page 46 of 48

237 -0.277 -0.572

238 -0.112 -0.416

239 0.045 -0.223

240 0.191 -0.001

241 0.326 0.235

242 0.448 0.458

243 0.552 0.649

244 0.629 0.795

245 0.67 0.897

246 0.67 0.957

247 0.63 0.975

248 0.556 0.95

249 0.458 0.877

250 0.348 0.75

251 0.234 0.564

252 0.112 0.328

253 -0.028 0.067

254 -0.189 -0.181

255 -0.361 -0.388

256 -0.521 -0.543

257 -0.648 -0.653

258 -0.725 -0.734

259 -0.743 -0.8

260 -0.704 -0.852

261 -0.615 -0.889

262 -0.494 -0.896

263 -0.358 -0.856

264 -0.228 -0.75

265 -0.121 -0.565

266 -0.032 -0.302

Page 47 of 48

267 0.067 0.008

268 0.198 0.308

269 0.354 0.544

270 0.514 0.7

271 0.652 0.782

272 0.745 0.809

273 0.777 0.808

274 0.743 0.796

275 0.646 0.78

276 0.502 0.758

277 0.334 0.714

278 0.167 0.625

279 0.026 0.468

280 -0.085 0.238

281 -0.181 -0.049

282 -0.287 -0.346

283 -0.405 -0.599

284 -0.523 -0.782

285 -0.623 -0.891

286 -0.689 -0.937

287 -0.711 -0.934

288 -0.683 -0.894

289 -0.606 -0.828

290 -0.486 -0.738

291 -0.337 -0.623

292 -0.175 -0.477

293 -0.015 -0.296

294 0.136 -0.082

295 0.276 0.15

296 0.405 0.379

Page 48 of 48

297 0.519 0.581

298 0.607 0.743

299 0.662 0.86

300 0.676 0.86

301 0.65 0.935

Table 2: Data values used in training the linear regression algorithm

