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1. Introduction 

Chaos theory is an interdisciplinary area of study that deals with complex deterministic systems 

that are sensitive to their initial conditions. Although predicting the long-term behavior of such 

systems is impossible, and prediction itself is made harder by numerical imprecisions, they are still 

extensively covered due to their prevalence and utility. 

For example, the ‘butterfly effect’ – called so as its analogy suggests a butterfly’s flapping in Brazil 

could cause a tornado in Texas1 – makes weather unpredictable in the long run due to its dependent 

factors. Trying to predict the state of ‘chaotic’ systems thus becomes an arduous challenge, 

especially when trying to make more accurate predictions for longer periods of time. However, 

despite this, chaos theory is extensively studied due to its real-life applications, one of the most 

notable being weather. This proves the relevance of this investigation to society. 

Double pendulums are a simpler example of a chaotic system. They are constructed by attaching 

one pendulum to the end of another. For small initial angles (with respect to its position at rest), it 

would behave similarly to a simple pendulum. However, at larger angles, its motion grows 

unpredictable due to the momentum of both pendulums interfering with each other. The angles of 

both bobs are governed by a pair of second-order, non-linear differential equations. Since no closed 

form solution for the angles as a function of time exists, the equations must be numerically 

integrated to find the angles at an instant. 

 
1 Lorenz, N. Edward. "Math! Science! History!" 29 December 1972. Predictability: Does the Flap of a Butterfly's 

Wings In Brazil Set Off a Tornado in Texas? 13 June 2024. 
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Machine learning techniques naturally lend themselves to chaos theory. Although chaotic systems 

appear random over time, they are anything but. For this reason, it is still possible to make short-

term predictions with reasonable accuracy (else weather forecasts would not have existed) based 

on existing data. As such, this investigation aims to answer the question: to what extent is 

multiple linear regression effective in predicting the immediate trajectory of a double 

pendulum given its bobs’ initial positions? 

In response to the proposed research question, two hypotheses are proposed. 

• Main hypothesis (𝐻0): The percentage error of the value predicted by multiple linear 

regression is on average less than or equal to 50%, and reduces with the number of data 

values fed. In other words, the technique is reasonably effective in predicting the immediate 

trajectory of a double pendulum given its bobs’ initial positions. 

• Alternative hypothesis (𝐻1): The percentage error of the value predicted by multiple linear 

regression is on average greater than 50% of the latter, and does not reduce with the number 

of data values fed. Thus, the technique is ineffective in predicting the immediate trajectory 

of a double pendulum given its bobs’ initial positions. 
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2. Background information 

2.1 Double pendulum 

 

Figure 1: Diagram of a double pendulum. Adapted from Izadgoshasb, Lim and Tang2 

As depicted in Figure 1, the double pendulum in question is a double ‘simple’ pendulum, where a 

simple pendulum consists of a spherical bob attached by a massless rod to a pivot. This 

specification is required as double ‘compound’ pendulums are often referred to as double 

pendulums, but they consist of swinging rigid bodies instead of a rod and a mass. 𝜃1 and 𝜃2 are 

the angles for the first and second bobs respectively, 𝑙1 and 𝑙2 are the lengths of the two massless 

rods, and 𝑚1 and 𝑚2 are the masses of the two bobs.  

 
2 Izadgoshasb, Izad, et al. "Improving efficiency of piezoelectric based energy harvesting from human motions using 

double pendulum system." Energy Conversion and Management (2019): 3. Document. 14 June 2024. 
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2.2 Machine learning 

Machine learning falls under the larger umbrella of artificial intelligence. It is defined by the 

International Business Machines Corporation (IBM) as focusing on using data and algorithms to 

allow artificial intelligence to learn as humans do, growing more accurate over time3. This broad 

definition enables several techniques within machine learning, such as linear regression, logistic 

regression, neural networks, and decision trees4. Each technique has its applications, advantages, 

and limitations. However, to remain within the scope of this investigation, only linear regression 

will be used. 

 

Applying machine learning to chaos theory and chaotic phenomena is an extensively covered 

subject. An immediate example is Ghorbani and colleagues’ application of multiple linear 

regression to predict wave parameters. In their article, they employed a more nuanced approach 

termed “Chaos-MLR”, or multiple linear regression accounting for characteristics of the system’s 

chaotic behavior. However, many other publications on the same utilize different techniques other 

than linear regression. Fan and colleagues used reservoir computing, a type of recurrent neural 

network, to predict the behavior of two chaotic systems, Kolmogorov-Sinai entropy and the 

complex Ginzberg-Landau equation. Similarly, Pathak and his team made use of reservoir 

computing to calculate important attributes of chaotic systems, such as Lyapunov exponents. 

 
3 IBM. What Is Machine Learning (ML)? | IBM. n.d. 14 June 2024. 

4 UC Berkeley School of Information. What Is Machine Learning (ML)? - I School Online. 26 June 2020. 14 June 

2024. 
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2.3 Linear regression 

Linear regression, as implied by the name, takes input data (the independent variable) to estimate 

the coefficients of the equation of a line. The output of the equation gives the predicted value of 

the dependent variable. Given the nature of the double pendulum, there are two possible sets of 

independent variables: 𝜃1, 𝜃2 and 𝑥1, 𝑥2, 𝑦1, 𝑦2 (the coordinates). As using all four coordinates to 

predict each of the next four would add unneeded complexity, the angles will be the independent 

variables. Thus, multiple linear (more than one independent variable) regression is required on the 

two independent variables (𝜃1 and 𝜃2), and the former dependent variable (the predicted value). 

 

2.4 Ordinary least squares (OLS) 

Ordinary least squares (OLS) models the relationship between two or more dependent variables 

and one independent variable by fitting a linear equation to the given data. Both simple and 

multiple linear regression have similar steps, thus it will not be necessary to explain both. 

The simple linear equation for this method5 takes the form: 

𝑦 = 𝑋𝛽 + 𝜖𝑖  

where 

• 𝑌 is an 𝑛 × 1 vector of dependent variable values, 

 
5 Soch, Joram. Ordinary least squares for multiple linear regression | The Book of Statistical Proofs. 27 September 

2019. 16 June 2024. 
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• 𝑋 is an 𝑛 × 𝑝 matrix with 𝑛 rows of input data and 𝑝 columns of independent variables, 

• 𝛽 is a 𝑝 × 1 vector of parameters, and 

• 𝜖𝑖 is an 𝑛 × 1 vector of errors, such that 𝜖𝑖 is independent and identically distributed in a 

normal distribution of mean 0 and variance 𝜎2 (𝜖𝑖  ~
𝑖.𝑖.𝑑

  𝒩(0, 𝜎2)) 

Least squares regression in general optimizes the parameters by minimizing the squared ‘residuals’ 

(differences between the actual value and that predicted by the equation). In the multiple linear 

case, this is done by solving the equation: 

𝑋𝑇𝑋𝛽 = 𝑋𝑇𝑦 

Solving these results in the least squares estimates of the parameters: 

𝛽̂ = (𝑋𝑇𝑋)−1(𝑋𝑇𝑌) 

This equation yields the estimated parameters that minimize the sum of squared residuals, hence 

the moniker ‘least squares’. However, it is important to note that the ordinary least squares method 

assumes little to no correlation between the independent variables and thus could be inaccurate. It 

also assumes homoskedasticity, or that the variance of the errors is constant, amongst other things6. 

This is why the general least squares (GLS) method will also be used in this investigation. 

 

 
6 Frost, Jim. 7 Classical Assumptions of Ordinary Least Squares (OLS) Linear Regression - Statistics By Jim. n.d. 16 

June 2024. 



Page 9 of 48 

 

2.5 General least squares (GLS) 

Generalized least squares (GLS) is an extension of the ordinary least squares method for multiple 

linear regression. GLS is used when the assumptions of OLS are violated and do not hold, 

specifically when the errors are heteroskedastic (the errors do not have a constant variance) or 

correlated. 

The GLS regression linear equation is the same as that of OLS, namely: 

𝑦 = 𝑋𝛽 + 𝜖 

The chief difference between ordinary and general least squares is that GLS accounts for the 

structure of the error terms. In GLS, one assumes the error vector ϵ to follow a multivariate normal 

distribution with a mean of zero and covariance matrix 𝛴; in other words, 𝜖 ∼ 𝑁(0, 𝛴). 

The GLS estimator of the parameters is given by: 

𝛽̂ = (𝑋𝑇𝛴 − 1𝑋) − 1𝑋𝑇𝛴 − 1𝑦 

𝛽̂ = (𝑋𝑇Σ−1𝑋)−1𝑋𝑇Σ−1𝑦 

where Σ−1 is the inverse of the covariance matrix of errors. Again, this formula yields the 

parameter estimates that minimize the generalized sum of the squared residuals. 

As mentioned, GLS is more efficient than OLS when the errors are heteroskedastic or correlated, 

but it requires knowledge of the error covariance matrix 𝛴. In practice, 𝛴 is often unknown and 

must be estimated from the available data, extending to the method of feasible generalized least 

squares (FGLS).  
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3. Methodology 

To carry out the investigation, I had to acquire a data set of a double pendulum’s motion, containing 

the angles of both bobs and the timestamp for the given data set. For this, I used an online 

simulation produced by the website myPhysicsLab7 to generate a comma-delimited (CSV) file of 

the timestamps and angles of each bob. The code used to retrieve the values from the simulation 

can be found in Appendix 1. However, despite the simplicity of the method, problems arose in the 

setup. 

The simulation I used allows for customization of every aspect, from the masses of the bobs to the 

acceleration due to gravity, as well as the time increment between frames of the simulation. A 

lower time increment would result in more data points but could increase the time taken to train 

the model, depending on the duration for which data was collected. The reason for this is that the 

simulation both renders the double pendulum and prints out its bobs’ angles for each frame, 

meaning the total number of data points would be given by 

𝑁𝑜. 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 = 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 × 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

where the time step and duration are given in seconds. 

As mentioned on the simulation’s website, the system is chaotic for large motions (i.e. large initial 

angles), but a simple linear motion for small ones (i.e. small angles). Thus, if linear regression is 

to predict its motion accurately, numerous data points are required.  

 
7 Neumann, Erik. “myPhysicsLab Double Pendulum.” myPhysicsLab. 19 Dec. 2023. Web. 06 Dec. 2024.  
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While performing trial and error with the given time controls, I found that increasing the time step 

allowed for longer durations but made it harder to trace the pendulum’s motion between frames – 

even the simulation broke for large initial angles at a 0.5-second time step. Smaller time steps had 

the opposite problem. I finally decided to use a time step of 0.1 seconds with a total duration of 30 

seconds for each set of initial angles, as that would provide enough data points for a human to trace 

out its motion while offering a reasonably long duration. 

The program used in the investigation is available under Appendix 1. I used the Apache Commons 

library’s implementation of OLS and GLS linear regression; further information about the 

specifications is listed under the control variables. 

 

3.1 Independent variable 

The independent variable will be the number of data values fed to the machine learning algorithm 

– in this case, the linear regression algorithms. Each data value is a floating-point (decimal) number 

of fixed length. The number of data values fed will vary from 50, 100, 150, 200, 250, to finally 

300. 

 

3.2 Dependent variable 

The dependent variable will be the percentage error of the value predicted by the linear regression 

algorithm (both ordinary and general least squares, or OLS and GLS). This will be calculated 

through a sequence of steps. 
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First, the initial data values are passed to the linear regression algorithm, through which the 

parameters and residuals of the equation are found. The predicted value is then found by 

summation of the residual and product of the variables and their parameters. The percentage error 

is then found by dividing the difference between the actual and predicted value over the actual 

value. 
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3.3 Control variables 

Variable Reason for controlling Specified value Method of 

controlling 

Implementation of 

linear regression 

used 

Different implementations 

may calculate the parameters 

or residuals differently, 

introducing errors and thus 

making comparisons 

meaningless. 

Apache Commons 

Math library, version 

3.6.1, from Maven 

Using the same 

version of the library 

for the entire 

program. 

Simulation used Different simulations may 

have varying levels of 

accuracy in which they 

simulate the double 

pendulum’s motion, 

preventing fair comparisons. 

myPhysicsLab’s 

double pendulum 

simulation 

Using the same 

simulation when 

collecting the initial 

data. 

Differential 

equation-solving 

method 

Different methods have 

different accuracies, 

preventing fair comparisons. 

Runge-Kutta method Using the same 

differential equation-

solving method when 

collecting the initial 

data. 

Time step In solving the differential 

equations required to find the 

motion of a double 

A timestep of 0.1 𝑠 Using the same time 

step when collecting 

the initial data. 
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pendulum, a time step is set. 

A smaller time step can result 

in more accurate values but 

increases the number of 

values recorded for the same 

time duration. 

System specifications Exact implementations of 

operations vary based on the 

architectures of the CPU and 

GPU. Changing these during 

the experiment may affect 

the results, thus preventing 

fair comparisons. 

CPU: i9-13980HX 

RAM: 32 GB 

GPU: NVIDIA RTX 

4080 

Operating System: 

Windows 11 Home 

Using the same 

system when 

collecting the initial 

data. 

Initial angle The kinematics of the double 

pendulum varies with the 

initial conditions, namely the 

initial angle of both bobs. 

𝜋

4
  radians Using the same initial 

angle when running 

the code to collect the 

initial data, for both 

bobs. 
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4. Data analysis & evaluation 

 

Figure 2: Screenshot of the program's output, taken by me 

With the program already providing me with the percentage errors for each independent variable 

value, all that was left to do was plot them on a graph. The results can be seen in Figures 3 and 4. 

A truncated table of the data values used can be found in Table 1; the entire table is provided in 

Appendix 3. 
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Data value no. Angle 1 Angle 2 

1 0.785 0.785 

2 0.751 0.785 

3 0.654 0.778 

4 0.509 0.748 

5 0.341 0.667 

6 0.177 0.514 

7 0.04 0.28 

8 -0.063 -0.016 

9 -0.152 -0.325 

10 -0.255 -0.588 

11 -0.377 -0.775 

12 -0.503 -0.885 

13 -0.615 -0.927 

14 -0.694 -0.918 

15 -0.728 -0.876 

Table 1: Truncated table of data values used to train linear regression algorithm 
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Figure 3: Graph of percentage error against the number of initial values fed for OLS regression 

 

 

Figure 4: Graph of percentage error against the number of initial values fed for GLS regression 
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An initial observation of the graphs shows no correlation between the number of initial values fed 

to the algorithm (both OLS and GLS) and the percentage error. Proof of this is the low 𝑅2 value, 

of only 6 × 10−5 (= 0.00006). This means that the graph above shows that the percentage error 

from the OLS regression model is not affected by the number of starting points for data. The 

percentage errors found show great variance, ranging from beyond 300% to close to 50%. 

Furthermore, the regression line has a very shallow slope (with a gradient of 0.0108). This made 

me think that factors beyond the dataset size, such as data quality, feature selection, or violations 

of OLS’ assumptions could be influencing the model’s performance. 

However, the GLS regression model did not perform any better, having a similar distribution of 

values compared to OLS. It also has an 𝑅2 value of 6 × 10−5, meaning virtually no correlation 

between the number of data values fed and the percentage error found. A possible explanation for 

the unsuccessful outcome could be that the randomness of a double pendulum’s motion prevents 

it from being predicted with simple techniques like linear regression. Even if the double pendulum 

started at a small enough angle, such that it oscillated like a simple pendulum, the relationship is 

still unlikely to be linear. Klinkachorn and Parmar, while investigating the effectiveness of 

different machine learning techniques in achieving the same, used a linear regression model with 

a polynomial feature map. Considering that this model managed to predict the kinematics for a 

double pendulum well at small angles, the underlying relationship is not linear. 

An interesting feature to note about Figures 3 and 4 is the presence of peaks at 100 and 250 initial 

values fed, conveying that the percentage error was highest for those. The graphs produced already 

rule out any correlation between the independent and dependent variables, so there is no 

connection between both. However, a reason for these peaks can be found by considering the 

angles at that time. Considering that the pendulum moves chaotically for large angles, the chosen 
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initial angle – 
𝜋

4
 radians – may therefore be too high for linear regression to be able to predict. A 

solution for this would either be to reduce the initial angle to a value like 
𝜋

6
 radians or use a more 

sophisticated algorithm. 

In general, other machine learning techniques might perform better than standard linear regression. 

In the same paper by Klinkachorn and Parmar, a long short-term memory (LSTM) neural network 

performed well for both chaotic and periodic (like a simple pendulum) motion, with minimal 

error8. As for the effectiveness of linear regression, however, it is completely ineffective.  

 

5. Limitations 

There were several limitations to this investigation. Firstly, the training dataset’s quality: being 

sourced from a simulation rather than a real-life experiment, inaccuracies can arise for several 

reasons. First is the fact that numerically solving differential equations is bound to have some 

errors. Although this can be solved partially by increasing the number of terms, some errors will 

always remain. Furthermore, solving to a greater number of terms increases the computational 

cost9, making it less feasible depending on the scenario. Even assuming that the differential 

equation solver is fully accurate, limitations are brought on by the system itself. A simulation does 

not account for environmental factors such as air resistance, slight changes in the Earth’s gravity 

based on location, or even friction between the joints of the double pendulum. The build of the 

 
8 Klinkachorn, Sirapop and Jupinder Parmar. "Evaluating Current Machine Learning Techniques On Predicting 

Chaotic Systems." CS 229 projects, Spring 2019 edition. 2019. 2-5. Document. 

9 Harder, Douglas Wilhelm. "Error analysis of Euler’s, Heun’s and the 4th-order Runge-Kutta method." n.d. ECE 

204: Course home | Department of Electrical and Computer Engineering | University of Waterloo. 3 December 

2024. 
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double pendulum also affects its kinematics. In the simulation, the rods are light compared to the 

bobs of the pendulum; however, this may not always be the case with physical double pendulums. 

For example, double compound pendulums are made of two rods, whose masses are evenly 

distributed over their lengths10, and thus would swing differently than the standard double 

pendulum. 

Secondly, I faced difficulties in understanding the concept of covariance matrices, used in general 

least squares regression. Consequently, I could not manually verify the covariance matrices used 

or perform sample calculations to ensure the code was bug-free. This hampered the accuracy of 

this investigation, as I was more reliant on my programming knowledge to verify the same. If I 

had received guidance or otherwise managed to understand matrices and statistics, I could have 

calculated the covariance matrix for a small set of training data as a trial and then compared it with 

the calculated matrix to ensure the code worked as intended. 

The relationship between 𝜃1 and 𝜃2 (the angles of the two bobs; refer to Figure 1) is also 

complicated to describe due to the chaotic nature of the system. Hence, finding the correlation and 

covariance is tricky, preventing any meaningful relationship from being established. This hampers 

one when investigating the behavior of the double pendulum, as this information would be useful. 

Fourthly, another factor to consider would be the initial angle. For large angles, the double 

pendulum behaves chaotically at first, due to having two degrees of freedom; as a result, it becomes 

harder to predict. However, for smaller initial angles, it oscillates like a simple pendulum. As this 

is far simpler to describe and predict, it is possible linear regression would have been more 

successful for such cases.  

 
10 christian. The double compound pendulum. Blog, 15 Apr. 2020. Web. 03 Dec. 2024.  
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6. Conclusion 

This paper investigated the efficacy of using multiple linear regression, a machine learning 

algorithm, to predict the kinematics of a double pendulum using its current position, with the past 

motion fed to it as training data. The experiment used Apache Commons’ implementation of 

ordinary and general least squares (OLS and GLS) multiple linear regression, trained on data from 

a simulation from the website myPhysicsLab. 

From the results, it can be determined that the alternative hypothesis 𝐻1 was correct: the percentage 

error is on average greater than 50% and does not reduce with the number of data values fed, for 

both OLS and GLS regression alike. The gradient and 𝑅2 values for the lines of best fit for OLS 

and GLS regression are both approximately zero, showing no clear trend between percentage error 

and the number of data values used. Furthermore, most points fall above 50%, with the maximum 

error in both cases being close to 325%. 

7. Further Scope 

One way to extend this investigation would be to use data collected from a real-life experiment, 

rather than a simulation – however, this raises practical issues. Collecting data itself would be a 

challenge, as each method of doing so has its limitations. For instance, using motion tracking 

software to find the angles from a recording of the double pendulum may yield inaccurate results 

if the frames in between are blurry. If the camera's refresh rate is not high enough, this may end up 

happening. I experienced this while trying to collect data for my investigation; my first plan was 

to use angles measured from a recording using said software, but the frames during periods of 
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chaotic motion were too blurred. In addition, external factors may introduce more chaos to the 

system, making it less predictable. 

Second, as mentioned earlier, machine learning algorithms – or even deep learning – may be better 

suited for this purpose. For instance, Li utilized random forest regression in predicting the values 

produced by the Lorenz system, a set of ordinary differential equations with chaotic solutions for 

certain parameters11, just as the double pendulum is a chaotic system for high enough initial angles. 

Similarly, Freibergs and colleagues modeled the motion of a double pendulum using a long short-

term memory (LSTM) neural network12, finding that the LSTM model performed better than an 

ODE-based approach. However, it is important to note that not all machine or deep learning types 

may be suitable for this purpose. Steger and colleagues evaluated that physics-informed neural 

networks (PINNs) – a form of neural network that combines data-driven learning with information 

about the underlying physics – “cheated” in predicting the double pendulum’s kinematics, either 

adjusting the initial conditions or slightly violating the laws of physics13. Implementing these 

algorithms also requires a solid understanding of the theory behind them to avoid mistakes in their 

implementation. Neural networks and other deep learning techniques are particularly complex, 

hampering their use. Care must also be taken in the hyperparameters involved, such as the size of 

training data, number of epochs, or number of batches. 

Third, increasing the number of inputs to the linear regression model may benefit it. For example, 

offering it the past two sets of angles – rather than just one – could allow it to understand the 

 
11 Li, Yuxuan. "Predicting Time Series of the Lorenz Chaotic System Using Random Forest Regression." 2023 8th 

International Conference on Intelligent Computing and Signal Processing (ICSP) (2023). Document. 
12 Freibergs, Reinis, et al. "LSTM Rollout Curriculum Using Double Pendulum." International Journal of Machine 

Learning (2024): 3-5. Document. 
13 Steger, Sophie, Franz M. Rohrhofer and Bernhard C Geiger. "How PINNs cheat: Predicting chaotic motion of a 

double pendulum." The Symbiosis of Deep Learning and Differential Equations II (2023): 3-4. Document. 
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pendulum's motion better. This would result in possibly more accurate predictions. Offering the 

initial angles along with the most recent angles may also benefit, as knowing the initial angle helps 

understand whether to expect chaotic or periodic motion. However, overfitting could become an 

issue, where the model fits closely or exactly to its training data and listens too closely to the noise 

present14. Of course, this can be extended to increase the number of inputs passed to a more 

sophisticated model (such as an LSTM neural network), and other information like the time 

elapsed (from when the pendulum was released) can be passed. However, there is no guarantee 

that these will lead to better – or even sensible – predictions. 

 

 

 
14 IBM. What is overfitting? | IBM. n.d. 04 December 2024. 
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Appendices 

Appendix 1: Code used to pull values from simulation 

Angle 1 

SIM_VARS.ANGLE_1 = 0.78539816339744830961566084581988; 

SIM_VARS.ANGLE_2 = 0.78539816339744830961566084581988; 

 

var angle1 = sim.getVarsList().getVariable('ANGLE_1'); 

var printVar = (v) => v.getValue().toFixed(3); 

var memo = new GenericMemo(function(){ 

  println(printVar(angle1)+',' 

)}); 

simRun.addMemo(memo); 

memo.memorize(); 

 

Angle 2 

SIM_VARS.ANGLE_1 = 0.78539816339744830961566084581988; 

SIM_VARS.ANGLE_2 = 0.78539816339744830961566084581988; 

 

var angle2 = sim.getVarsList().getVariable('ANGLE_2'); 

var printVar = (v) => v.getValue().toFixed(3); 

var memo = new GenericMemo(function(){ 



Page 27 of 48 

 

  println(printVar(angle2)+',' 

)}); 

simRun.addMemo(memo); 

memo.memorize(); 

 

Appendix 2: Code of the program used 

package _EEProject; 

 

import org.apache.commons.math3.stat.regression.OLSMultipleLinearRegression; 

import org.apache.commons.math3.linear.RealMatrix; 

import org.apache.commons.math3.stat.correlation.Covariance; 

import org.apache.commons.math3.stat.regression.AbstractMultipleLinearRegression; 

import org.apache.commons.math3.stat.regression.GLSMultipleLinearRegression; 

 

import java.io.File; 

import java.io.FileNotFoundException; 

import java.util.Arrays; 

import java.util.Scanner; 

 

public class Main { 

 static class CovMatrix extends Covariance { 

  public double[][] covarianceMatrix(double[][] data) { 
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         // Transpose the data matrix to calculate the covariance of predictors (columns) 

         double[][] transposed = new double[data[0].length][data.length]; 

         for (int i = 0; i < data.length; i++) { 

             for (int j = 0; j < data[0].length; j++) { 

                 transposed[j][i] = data[i][j]; 

             } 

         } 

 

         // Compute covariance matrix for predictors 

         double[][] covMatrix = computeCovarianceMatrix(transposed).getData(); 

         return covMatrix; 

     } 

 } 

  

 static double[][] readData(File file1, File file2, int len) { 

  double[][] arr = new double[len][2]; 

 

  try (Scanner sc1 = new Scanner(file1); Scanner sc2 = new Scanner(file2)) { 

   sc1.useDelimiter(","); 

   sc2.useDelimiter(","); 

   int i = 0; 

   while (sc1.hasNext()) { 

    String temp = sc1.next(); 
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    arr[i++][0] = Double.parseDouble(temp); 

   } 

 

   i = 0; 

   while (sc2.hasNext()) { 

    String temp = sc2.next(); 

    arr[i++][1] = Double.parseDouble(temp); 

   } 

  } 

  catch (FileNotFoundException e) { 

   e.printStackTrace(); 

  } 

   

  return arr; 

 } 

 

 static double[] getAngles(double[][] x, int n, int len) { 

  double[] vals = new double[len]; 

  for (int i = 0; i < len; i++) { 

   vals[i] = x[i][n]; 

  } 

  return vals; 

 } 
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 static double[][] copyArrayRange(double[][] x, int rows) { 

  double[][] arr = new double[rows][2]; 

 

  for (int i = 0; i < rows; i++) { 

   arr[i][0] = x[i][0]; 

   arr[i][1] = x[i][1]; 

  } 

 

  return arr; 

 } 

 

 static double estimateValue(AbstractMultipleLinearRegression r, double[] x, int n) { 

  double estimatedValue = 0; 

  double[] beta = r.estimateRegressionParameters(); 

  double[] residuals = r.estimateResiduals(); 

 

  for (int i = 0; i < x.length; i++) { 

   estimatedValue += (beta[i] * x[i]); 

  } 

 

  estimatedValue += residuals[n-1]; 
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  return estimatedValue; 

 } 

  

  

 

 public static void main(String[] args) { 

  double[][] rawData = readData(new File("pi by 4 angle 1 values.csv"), new File("pi by 4 angle 2 

values.csv"), 301); 

  double[][] initAngles = Arrays.copyOf(rawData, 300); 

  double[][] finalAngles = Arrays.copyOfRange(rawData, 1, 301); 

   

  System.out.println("OLS % acacuracies: \n"); 

 

  // OLS Regression models for 50 values 

  OLSMultipleLinearRegression ols50Angle1 = new OLSMultipleLinearRegression(); 

  ols50Angle1.newSampleData(getAngles(finalAngles, 0, 50), copyArrayRange(initAngles, 50)); 

 

  // OLS Regression models for 100 values 

  OLSMultipleLinearRegression ols100Angle1 = new OLSMultipleLinearRegression(); 

  ols100Angle1.newSampleData(getAngles(finalAngles, 0, 100), copyArrayRange(initAngles, 100)); 

 

  // OLS Regression models for 150 values 

  OLSMultipleLinearRegression ols150Angle1 = new OLSMultipleLinearRegression(); 
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  ols150Angle1.newSampleData(getAngles(finalAngles, 0, 150), copyArrayRange(initAngles, 150)); 

 

  // OLS Regression models for 200 values 

  OLSMultipleLinearRegression ols200Angle1 = new OLSMultipleLinearRegression(); 

  ols200Angle1.newSampleData(getAngles(finalAngles, 0, 200), copyArrayRange(initAngles, 200)); 

 

  // OLS Regression models for 250 values 

  OLSMultipleLinearRegression ols250Angle1 = new OLSMultipleLinearRegression(); 

  ols250Angle1.newSampleData(getAngles(finalAngles, 0, 250), copyArrayRange(initAngles, 250)); 

 

  // OLS Regression models for 300 values 

  OLSMultipleLinearRegression ols300Angle1 = new OLSMultipleLinearRegression(); 

  ols300Angle1.newSampleData(getAngles(finalAngles, 0, 300), copyArrayRange(initAngles, 300)); 

 

  // % error for OLS for 50 values 

  System.out.println( 

    (estimateValue(ols50Angle1, initAngles[49], 50) - finalAngles[49][0]) 

    / finalAngles[49][0] * 100 

    ); 

 

  // % error for OLS for 100 values 

  System.out.println( 

    (estimateValue(ols100Angle1, initAngles[99], 100) - finalAngles[99][0]) 
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    / finalAngles[99][0] * 100 

    ); 

 

  // % error for OLS for 150 values 

  System.out.println( 

    (estimateValue(ols150Angle1, initAngles[149], 150) - finalAngles[149][0]) 

    / finalAngles[149][0] * 100 

    ); 

 

  // % error for OLS for 200 values 

  System.out.println( 

    (estimateValue(ols200Angle1, initAngles[199], 200) - finalAngles[199][0]) 

    / finalAngles[199][0] * 100 

    ); 

 

  // % error for OLS for 250 values 

  System.out.println( 

    (estimateValue(ols250Angle1, initAngles[249], 250) - finalAngles[249][0]) 

    / finalAngles[249][0] * 100 

    ); 

 

  // % error for OLS for 300 values 

  System.out.println( 
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    (estimateValue(ols300Angle1, initAngles[299], 300) - finalAngles[299][0]) 

    / finalAngles[299][0] * 100 

    ); 

 

  CovMatrix cm = new CovMatrix(); 

   

  // GLS Regression models for 50 values 

  GLSMultipleLinearRegression gls50Angle1 = new GLSMultipleLinearRegression(); 

  gls50Angle1.newSampleData(getAngles(finalAngles, 0, 50), copyArrayRange(initAngles, 50), 

cm.covarianceMatrix(copyArrayRange(initAngles, 50))); 

 

  // GLS Regression models for 100 values 

  GLSMultipleLinearRegression gls100Angle1 = new GLSMultipleLinearRegression(); 

  gls100Angle1.newSampleData(getAngles(finalAngles, 0, 100), copyArrayRange(initAngles, 100), 

cm.covarianceMatrix(copyArrayRange(initAngles, 100))); 

 

  // GLS Regression models for 150 values 

  GLSMultipleLinearRegression gls150Angle1 = new GLSMultipleLinearRegression(); 

  gls150Angle1.newSampleData(getAngles(finalAngles, 0, 150), copyArrayRange(initAngles, 150), 

cm.covarianceMatrix(copyArrayRange(initAngles, 150))); 

 

  // GLS Regression models for 200 values 

  GLSMultipleLinearRegression gls200Angle1 = new GLSMultipleLinearRegression(); 
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  gls200Angle1.newSampleData(getAngles(finalAngles, 0, 200), copyArrayRange(initAngles, 200), 

cm.covarianceMatrix(copyArrayRange(initAngles, 200))); 

 

  // GLS Regression models for 250 values 

  GLSMultipleLinearRegression gls250Angle1 = new GLSMultipleLinearRegression(); 

  gls250Angle1.newSampleData(getAngles(finalAngles, 0, 250), copyArrayRange(initAngles, 250), 

cm.covarianceMatrix(copyArrayRange(initAngles, 250))); 

 

  // GLS Regression models for 300 values 

  GLSMultipleLinearRegression gls300Angle1 = new GLSMultipleLinearRegression(); 

  gls300Angle1.newSampleData(getAngles(finalAngles, 0, 300), copyArrayRange(initAngles, 300), 

cm.covarianceMatrix(copyArrayRange(initAngles, 300))); 

 

  System.out.println("\nGLS % acacuracies: \n"); 

   

  System.out.println(gls300Angle1.estimateRegressionParameters().length); 

   

  // % error for GLS for 50 values 

  System.out.println( 

    (estimateValue(gls50Angle1, initAngles[49], 50) - finalAngles[49][0]) 

    / finalAngles[49][0] * 100 

    ); 

 

  // % error for GLS for 100 values 
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  System.out.println( 

    (estimateValue(gls100Angle1, initAngles[99], 100) - finalAngles[99][0]) 

    / finalAngles[99][0] * 100 

    ); 

 

  // % error for GLS for 150 values 

  System.out.println( 

    (estimateValue(gls150Angle1, initAngles[149], 150) - finalAngles[149][0]) 

    / finalAngles[149][0] * 100 

    ); 

 

  // % error for GLS for 200 values 

  System.out.println( 

    (estimateValue(gls200Angle1, initAngles[199], 200) - finalAngles[199][0]) 

    / finalAngles[199][0] * 100 

    ); 

 

  // % error for GLS for 250 values 

  System.out.println( 

    (estimateValue(gls250Angle1, initAngles[249], 250) - finalAngles[249][0]) 

    / finalAngles[249][0] * 100 

    ); 
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  // % error for GLS for 300 values 

  System.out.println( 

    (estimateValue(gls300Angle1, initAngles[299], 300) - finalAngles[299][0]) 

    / finalAngles[299][0] * 100 

    ); 

 } 

} 
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Appendix 3: Table of data values used 

Data value 

no. 

Angle 1 Angle 2 

1 0.785 0.785 

2 0.751 0.785 

3 0.654 0.778 

4 0.509 0.748 

5 0.341 0.667 

6 0.177 0.514 

7 0.04 0.28 

8 -0.063 -0.016 

9 -0.152 -0.325 

10 -0.255 -0.588 

11 -0.377 -0.775 

12 -0.503 -0.885 

13 -0.615 -0.927 

14 -0.694 -0.918 

15 -0.728 -0.876 

16 -0.708 -0.812 

17 -0.633 -0.73 

18 -0.51 -0.631 

19 -0.354 -0.504 

20 -0.184 -0.34 

21 -0.02 -0.134 

22 0.129 0.104 

23 0.261 0.348 

24 0.381 0.569 

25 0.49 0.747 

26 0.581 0.874 
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27 0.643 0.951 

28 0.669 0.983 

29 0.656 0.971 

30 0.604 0.914 

31 0.522 0.808 

32 0.419 0.648 

33 0.304 0.439 

34 0.18 0.196 

35 0.042 -0.052 

36 -0.116 -0.273 

37 -0.287 -0.452 

38 -0.453 -0.589 

39 -0.593 -0.693 

40 -0.689 -0.777 

41 -0.731 -0.846 

42 -0.717 -0.898 

43 -0.653 -0.922 

44 -0.55 -0.903 

45 -0.424 -0.824 

46 -0.296 -0.67 

47 -0.183 -0.436 

48 -0.091 -0.139 

49 0.001 0.172 

50 0.122 0.436 

51 0.276 0.623 

52 0.443 0.731 

53 0.599 0.778 

54 0.718 0.79 

55 0.778 0.789 

56 0.772 0.785 
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57 0.699 0.779 

58 0.571 0.757 

59 0.409 0.698 

60 0.24 0.575 

61 0.089 0.374 

62 -0.029 0.101 

63 -0.122 -0.208 

64 -0.218 -0.493 

65 -0.333 -0.711 

66 -0.458 -0.851 

67 -0.575 -0.919 

68 -0.667 -0.931 

69 -0.717 -0.901 

70 -0.718 -0.845 

71 -0.664 -0.768 

72 -0.56 -0.673 

73 -0.416 -0.555 

74 -0.251 -0.403 

75 -0.084 -0.211 

76 0.072 0.016 

77 0.212 0.258 

78 0.338 0.488 

79 0.454 0.681 

80 0.554 0.826 

81 0.627 0.826 

82 0.666 0.922 

83 0.666 0.972 

84 0.626 0.98 

85 0.553 0.943 

86 0.455 0.858 
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87 0.344 0.719 

88 0.226 0.527 

89 0.097 0.291 

90 -0.052 0.038 

91 -0.219 -0.199 

92 -0.389 -0.396 

93 -0.543 -0.546 

94 -0.66 -0.658 

95 -0.725 -0.746 

96 -0.733 -0.817 

97 -0.686 -0.874 

98 -0.595 -0.91 

99 -0.474 -0.911 

100 -0.342 -0.859 

101 -0.22 -0.737 

102 -0.12 -0.535 

103 -0.032 -0.259 

104 0.075 0.055 

105 0.215 0.344 

106 0.378 0.564 

107 0.54 0.703 

108 0.675 0.772 

109 0.76 0.794 

110 0.781 0.794 

111 0.735 0.788 

112 0.627 0.78 

113 0.475 0.764 

114 0.305 0.72 

115 0.144 0.624 

116 0.011 0.455 
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117 -0.091 0.21 

118 -0.184 -0.089 

119 -0.291 -0.388 

120 -0.413 -0.635 

121 -0.534 -0.805 

122 -0.635 -0.901 

123 -0.701 -0.935 

124 -0.72 -0.921 

125 -0.686 -0.874 

126 -0.601 -0.805 

127 -0.473 -0.715 

128 -0.316 -0.603 

129 -0.149 -0.462 

130 0.012 -0.283 

131 0.159 -0.068 

132 0.293 0.17 

133 0.415 0.404 

134 0.522 0.61 

135 0.607 0.772 

136 0.659 0.886 

137 0.672 0.954 

138 0.644 0.979 

139 0.581 0.962 

140 0.49 0.898 

141 0.383 0.782 

142 0.269 0.61 

143 0.146 0.387 

144 0.008 0.133 

145 -0.152 -0.117 

146 -0.323 -0.332 
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147 -0.487 -0.499 

148 -0.621 -0.623 

149 -0.709 -0.715 

150 -0.74 -0.789 

151 -0.713 -0.849 

152 -0.636 -0.893 

153 -0.523 -0.909 

154 -0.392 -0.881 

155 -0.262 -0.789 

156 -0.151 -0.62 

157 -0.061 -0.372 

158 0.034 -0.067 

159 0.16 0.24 

160 0.314 0.492 

161 0.478 0.664 

162 0.626 0.759 

163 0.732 0.796 

164 0.779 0.8 

165 0.759 0.793 

166 0.675 0.783 

167 0.538 0.769 

168 0.372 0.737 

169 0.204 0.663 

170 0.057 0.523 

171 -0.057 0.308 

172 -0.151 0.027 

173 -0.252 -0.277 

174 -0.369 -0.547 

175 -0.491 -0.748 

176 -0.6 -0.873 
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177 -0.679 -0.93 

178 -0.716 -0.934 

179 -0.702 -0.9 

180 -0.636 -0.838 

181 -0.523 -0.755 

182 -0.377 -0.651 

183 -0.214 -0.518 

184 -0.05 -0.351 

185 0.103 -0.147 

186 0.243 0.084 

187 0.372 0.32 

188 0.487 0.536 

189 0.582 0.712 

190 0.646 0.843 

191 0.673 0.929 

192 0.659 0.972 

193 0.607 0.972 

194 0.524 0.928 

195 0.421 0.834 

196 0.309 0.684 

197 0.192 0.478 

198 0.062 0.231 

199 -0.088 -0.027 

200 -0.256 -0.261 

201 -0.426 -0.447 

202 -0.575 -0.585 

203 -0.683 -0.684 

204 -0.737 -0.761 

205 -0.732 -0.824 

206 -0.673 -0.873 
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207 -0.571 -0.901 

208 -0.443 -0.893 

209 -0.308 -0.829 

210 -0.187 -0.692 

211 -0.09 -0.475 

212 -0.001 -0.187 

213 0.11 0.127 

214 0.254 0.406 

215 0.416 0.611 

216 0.571 0.735 

217 0.695 0.792 

218 0.767 0.806 

219 0.774 0.8 

220 0.714 0.789 

221 0.596 0.774 

222 0.439 0.748 

223 0.268 0.692 

224 0.11 0.579 

225 -0.019 0.394 

226 -0.119 0.136 

227 -0.216 -0.163 

228 -0.327 -0.45 

229 -0.448 -0.679 

230 -0.563 -0.833 

231 -0.653 -0.915 

232 -0.705 -0.939 

233 -0.71 -0.92 

234 -0.663 -0.869 

235 -0.568 -0.793 

236 -0.434 -0.696 
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237 -0.277 -0.572 

238 -0.112 -0.416 

239 0.045 -0.223 

240 0.191 -0.001 

241 0.326 0.235 

242 0.448 0.458 

243 0.552 0.649 

244 0.629 0.795 

245 0.67 0.897 

246 0.67 0.957 

247 0.63 0.975 

248 0.556 0.95 

249 0.458 0.877 

250 0.348 0.75 

251 0.234 0.564 

252 0.112 0.328 

253 -0.028 0.067 

254 -0.189 -0.181 

255 -0.361 -0.388 

256 -0.521 -0.543 

257 -0.648 -0.653 

258 -0.725 -0.734 

259 -0.743 -0.8 

260 -0.704 -0.852 

261 -0.615 -0.889 

262 -0.494 -0.896 

263 -0.358 -0.856 

264 -0.228 -0.75 

265 -0.121 -0.565 

266 -0.032 -0.302 
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267 0.067 0.008 

268 0.198 0.308 

269 0.354 0.544 

270 0.514 0.7 

271 0.652 0.782 

272 0.745 0.809 

273 0.777 0.808 

274 0.743 0.796 

275 0.646 0.78 

276 0.502 0.758 

277 0.334 0.714 

278 0.167 0.625 

279 0.026 0.468 

280 -0.085 0.238 

281 -0.181 -0.049 

282 -0.287 -0.346 

283 -0.405 -0.599 

284 -0.523 -0.782 

285 -0.623 -0.891 

286 -0.689 -0.937 

287 -0.711 -0.934 

288 -0.683 -0.894 

289 -0.606 -0.828 

290 -0.486 -0.738 

291 -0.337 -0.623 

292 -0.175 -0.477 

293 -0.015 -0.296 

294 0.136 -0.082 

295 0.276 0.15 

296 0.405 0.379 
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297 0.519 0.581 

298 0.607 0.743 

299 0.662 0.86 

300 0.676 0.86 

301 0.65 0.935 

Table 2: Data values used in training the linear regression algorithm 

 

 


