Investigating the Performance of Real-time Object Detection Frameworks YOLOv8, YOLOv9 and YOLOv10 for Object Detection in adverse weather conditions

"How do the real-time object detection frameworks; YOLOv8, YOLOv9, and YOLOv10, comparatively perform in terms of model efficiency in detecting various objects in adverse weather conditions?"

A Computer Science Extended Essay

Word Count: 3,984 Session: November 2024

CS EE World https://cseeworld.wixsite.com/home 30/34 (A) November 2024

Submitter info: Hey, Nethra here :)

feel free to contact me at neythrasubr [at] gmail [dot] com if you want me to review your EE or something.

Table Of Contents

1 Introduction	3
1.1Context and Scope	3
1.2 Research Question	4
1.3 Related Work	5
2 Background	5
2.1 Neural Networks	5
2.1.1 Definitions	5
2.2 You Only Look Once (YOLO)	9
2.2.1 YOLOv8	
2.2.2 YOLOv9	
2.2.3 YOLOv10	14
3 Methodology	16
3.1 Dataset	16
3.2 Variables	
3.3 Evaluation Metrics	19
3.4 Model Training	
3.4.2 YOLOv9	22
3.4.3 YOLOv10	23
3.5 Hypothesis	25
4 Results and Analysis	25
4.1 Tabular Representation	25
4.2 Graphical Representation	26
4.2.1 F1-Confidence	27
4.2.2 Precision on Recall	28
4.2.3 Precision on Confidence	28

4.2.4 Recall on Confidence	29
4.2.5 Confusion Matrix	30
4.3 Analysis	32
5 Conclusion	35
6 Further Scope	35
7 Limitations and Challenges	36
8 Bibliography	5 Confusion Matrix 3 nalysis 3 ser Scope 3 ntions and Challenges 3 graphy 3 dices 4 opendix A: Terminology 4 opendix B: Background 4 1 Artificial Neural Networks (NNs) 4 2 Convolutional Neural Networks (CNNs) 4
9 Appendices	42
9.1 Appendix A: Terminology	42
9.2 Appendix B: Background	42
9.2.1 Artificial Neural Networks (NNs)	42
9.2.2 Convolutional Neural Networks (CNNs)	43
9.3 Appendix D: Investigation Code	46

1 Introduction

1.1 Context and Scope

There is an extensive use of Computer Vision (CV) in today's day of age, and the proliferation of its use has advanced. CV is often used to substitute manual labour in organisations and enterprises. One such interesting domain is Rescue Robots. Integrating CV into Search and Rescue missions (SAR) facilitates their deployment in disaster relief and search operations (*Flynn et al*).

CV is made up of Neural Networks (NNs). NNs are capable of processing raw data to output valuable information ("Computer Vision"). Datasets, which consist of labelled data, are fed into these networks to facilitate the creation of scenarios. Numerous other factors influence the prediction's accuracy such as frameworks which the model is built upon. Each framework has unique displayed behaviour when applied to varying datasets (Li and Luo). Consequently, a framework that performs exceptionally well with a dataset might perform poorly with dataset. The variability necessitates the development of multiple frameworks and versions ("Machine Learning Frameworks").

For instance, during the aftermath of the meltdown of nuclear reactors in the Fukushima Daiichi Nuclear Powerplant ("Fukushima Daiichi Accident"). There was an urgent need for rescue robots to (Westcott) assess the damage, search for survivors and conduct repairs. The site was also experiencing harsh weather conditions such as heavy rain and strong winds. This made it hard for the available robots to navigate or perform tasks as they were unable to navigate through dust, weather and debris (Li et al.).

Due to the collection of environmental data through hardware such as cameras, there is little to no validation of the data received which could help differentiate and eliminate visuals which can't be interpreted by the model, thus raising a problem statement.

1.2 Research Question

In the recent advances in Artificial Intelligence; (AI) You Only Look Once (YOLO), which is a widely used framework and influential method for object detection (OD) has been brought to significant attention, and is often used for Real-time object detection tasks. Redmon et al introduced YOLO in 2015 since then, scholars have published updated iterations of the concept.

This investigation aims to examine algorithms YOLOv8, YOLOv9 and YOLOv10. Recent versions of YOLO frameworks such as YOLOv10 released in May 2024 and YOLOv9 released in February 2024 lack extensive documentation, particularly in comparison with YOLOv8. Notably, these three frameworks have yet to be compared against each other regarding the robustness of their performance in varying weather conditions.

This investigation will conduct an extensive evaluation of the performances of frameworks; YOLOv8, YOLOv9 and YOLOv10 evaluating these concerning the mean average precision, recall, and precision. Therefore, the research question proposed is: "How do the real-time object detection frameworks; YOLOv8, YOLOv9, and YOLOv10, comparatively perform in terms of model efficiency in detecting various objects in adverse weather conditions? "Although this investigation does not rely on multimodal data inputs nor videos as datasets, it emphasises the

detection of objects in images compromised by weather conditions—providing more insight into object detection in still images. With the recognition that video data or multimodal datasets could further enhance the quality of the research, the study aims to maintain simplicity while offering a foundation for future development and research.

1.3 Related work

Though there have been numerous studies on CV there seems to be a lack of documentation with regards to YOLOv10 and YOLOv9. A journal published in ISPRS examines the necessity of specialised enhancements in object detection models for adverse weather conditions but there has been a lack of specificity in the analysis of YOLO (*Toma et al.*). Similarly, another paper released in 2019 shares a valuable understanding of how YOLO faces challenges in adverse weather conditions and further suggests the use of multimodal approaches—this paper however lacks indepth research using the latest YOLO models (*Wang et al.*).

2 Background

2.1 Neural Networks

2.1.1 Definitions

In addition to this, it is recommended to hover through Appendix A and Appendix B to gain a profound understanding of Neural networks and Convolutional neural networks.

Terminology	Definition
Backbone	Extracts crucial features from input dataset through the use of CNNs
Neck	Connects the backbone to the head. Helps aggregate features provided by
	backbone
Head	Uses features extracted through the neck and backbone to make
	predictions.
Convolutional Layer	Appliance of convolutional operations to input data to capture spatial
	hierarchies in images by extracting features. (LeCun et al.)
Convolution	The mathematical operation is applied in convolutional layers to filter
	data by sliding a kernel/filter across input aimed at producing a feature
	map. (LeCun et al.)
Feature maps	Represents various features example, edges and textures. (LeCun,
	Bengio, and Hinton)
Kernal size	Dimension of filter used in a convolutional layer expressed as height
	multiplied by width. (LeCun et al.)
Channel count	Number of channels in an image or features (RGB or feature
	representations). (Jain)
Post-Processing	Techniques applied after a model has done learning. ("References for
	Papers")

Activation Function	Mathematical structures applied to a neural network's output to introduce non-linearity, helping the network to model complex patterns. (<i>Jain</i>)
Inference	Using a trained machine learning model to make predictions based on
Interence	Using a trained machine learning model to make predictions based on new data. (Jain)
Inference cost	Computational resources are required to generate predictions for inference. (Chollet)
Bottleneck	Series of layers where the dimensionality of feature representation is
	reduced to compress the information or improve computational
	efficiency. (Chollet)
Anchor free detection	Methods that don't rely on predefined anchor boxes, rather predicting
detection	object locations directly. (Tian et al.)
Lightweight model	A network designed to be resource-efficient. (Redmon and Farhadi)
Up-sample	Process of increasing the spatial resolution of feature maps. (Odena et
	al.)
Downsample	Process of reducing spatial resolution of feature maps. (LeCun et al.)
Decoupling	Separation of different aspects of processing to allow more efficient
	architectural designs.
Spatial reduction	Decreasing spatial dimensions of feature maps. (LeCun et al.)
Pointwise convolution	Convolutional operation with kernel (Redmon and Farhadi)

Cross-stage partial connections	A technique where feature maps are partially propagated through different stages of the network– enhances gradient flow. (Wang et al.)
Spatial Pyramid Pooling Faster	Pools feature maps at multiple scales to improve OD. (Hirschfeld and Ziemann)
Non-Maximum Suppression (NMS)	Post-processing technique which eliminates redundant bounding box predictions and selects the ones with high confidence.
Non-uniform matching	Approach to OD where matching between predicted bounding boxes and ground truth boxes are adjusted dynamically or irregularly.
NUMS post- processing	Post-processing technique which leverages non-uniform matching strategies during.
One-to-one head	Each anchor point is assigned a single object label, facilitating simpler matching. (He et al.)
One-to-one matching predictions	Predicted objects are matched with one ground truth object during training. (Zhou et al.)
Auxiliary framework	Additional components or branches are added to the main model to support the learning process by supplying gradient information and enhancing performance. (Szegedy et al.)
Gradient path planning	A technique used to optimise the flow of gradients when backpropagation occurs.

Transformer Model	Relies on self-attention mechanisms to process input in parallel.
	Efficiently handles sequential data.
Vision transformer	NN architecture that uses transformer models.
Python SDK	Software development kit with a compilation of kits, documentation and libraries.

Table 1: Important Definitions and Terminologies

2.2 You Only Look Once (YOLO)

You Only Look Once (YOLO) algorithm is a family of object detectors that have iterated throughout the years since its initial release by Joseph Redmon in 2015 (*Redmon et al.*). Each iteration advanced its predecessors by including a novel method. YOLO is notoriously known for its ability to proceed with real-time object detection by dividing the input images into a grid matrix and predicting the bounding boxes along with its class probabilities in parallel (*Redmon et al.*).

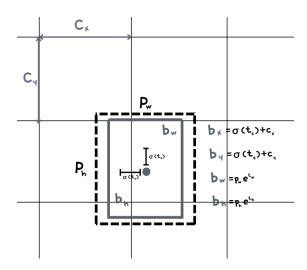


Figure 1: Process of bounding box prediction; centered coordinate prediction; use of sigmoid function; use of the location of the grid cell.

2.2.1 YOLOv8

Compared to its predecessors YOLOv8 includes a newer backbone that consists of a CSPDarknet architecture (*Touvron et al.*) which holds 53 convolutional layers and as well as equips itself with cross-stage partial connections, along with this, YOLOv8 uses the SiLU activation function which mitigates the vanishing gradient problem (*Chen et al.*). This intensifies information transmission in deep neural networks. The C2f module combines features on a high level with context to enhance detection accuracy. Spatial pyramid pooling faster (SPPF) (*Simonyan and Zisserman*) is another module and the other convolutional layers process the features in variable scales.

In YOLOv8 the head is detachable hence it handles classification, object scores and regression work independently— due to this the overall accuracy is increased. Up sample (U) layers help increase the resolution of provided feature maps. Convolutional layers are included in the head to analyse these feature maps. Overall, the head is designed to optimise its speed and accuracy and hence consideration is given to kernel sizes and channel count of each layer.

YOLOv8 uses anchor-free detection to speed up post-processing (Non-Maximum Suppression) additionally YOLOv8 also includes a newer convolutional layer aimed to detect features using learnable filters. The input layers are detected in variable resolutions and sizes to allow the network to be versatile (*Fischer et al.*).

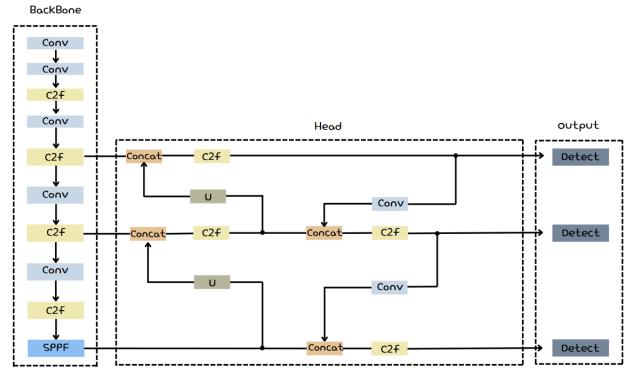


Figure 2: YOLOv8 Architecture

Predecessors of YOLOv8 had equipped a C3 convolutional layer which YOLOv8 replaces using a C2f layer. The C2f layers help utilise all the bottlenecks. Splitting YOLOv8 achieves parallel processing. Additionally, the kernel size has been increased in YOLOv8.

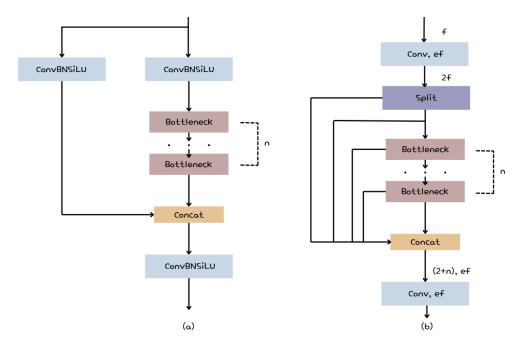


Figure 3: (a) defines bottlenecks in YOLOv5 defined as n (b) defines bottleneck layers in YOLOv8 defined as n

In addition to these architectural features, YOLOv8 employs user accessibility by integrating Python SDK and Command Line Interface (CLI) which further supports programmers to be able to use this model (*Ahmed et al.*).

2.2.2 YOLOv9

During bottleneck (*Kingma and Ba*) conditions, it can be especially hard for ML models to be able to interpret data. Traditional methods of Masked modelling (*Wang et al.*) and reversible architectures (*Nijkamp et al.*) had to be iterated due to their drawbacks. To address these issues especially the bottleneck situation YOLOv9 has proposed Programmable gradient information (PGI). PGI generates reliable gradient information for model network weight updates. Generalised ELAN (*Jiang et al.*) (GELAN) simultaneously takes multiple parameters such as accuracy, computational efficiency, and speed into account which allows this design to allow programmers to make decisions upon choosing appropriate computational blocks for different devices. The combination of PGI and GELAN gave rise to YOLOv9. YOLOv9 proposes that increasing the model size accumulating more parameters and adding enhanced data transformers can help information retainment—however, this does not address the issue completely.

The introduced auxiliary framework PGI is divided into three components. As shown in the figure 4. PGI is dependent on the main branch and hence it does not require inference costs, the remainder is utilised to solve and precisely investigate important issues in learning methods. Auxiliary reversible branch tries to deal with information bottleneck which occurs when the network is deepened which will cause the loss function to be incapable of providing reliable gradients.

Finally, multi-level auxiliary information handles error accumulation problems which are generally caused due to deep supervision.

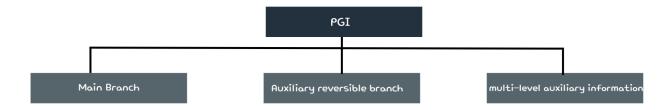


Figure 4: Three divisions of PGI

GELAN is a new network architecture made from the combination of CSPNet (*Ramesh et al.*) and ELAN (*Jiang et al.*) which are innately made with gradient path planning. YOLOv9's GELAN takes into consideration the weight of the model, inference speed, and accuracy. GELAN validates PGI, especially in lightweight models.

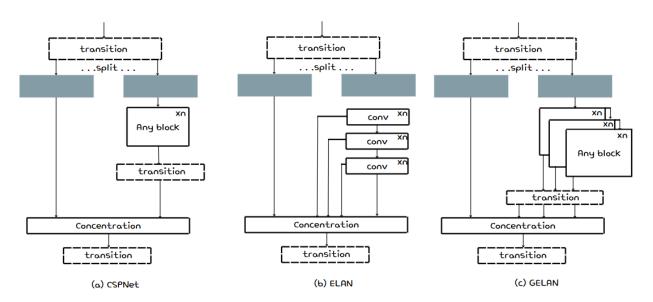


Figure 5: (a) CSPNet (b) ELAN and (c) GELAN architectures

2.2.3 YOLOv10

End-to-end object detection is a shift of methodology from the past where traditional pipelines (*Srivastava et al.*) were used. Baidu's RT-DETR (*Raffel et al.*) is used which is a vision transformer architecture. Hungarian loss is also occupied by it to reach one-to-one matching predictions (*Viana*) and hence it eliminates post-processing.

YOLOs rely on NUMS post-processing to allocate positive samples for each instance to leverage TAL (*Vaswani et al.*) during training—this is detrimental to the model's inference efficiency. YOLOv10 provides an NMS-free training strategy through the use of dual labels and consistent matching metrics ("YOLOv10 Documentation").

As shown in Figure 6 the incorporation of one-to-one head is seen. The optimisation objective remains the same as the original branch of one-to-many but this leverages to obtain label assignments (*Xu et al.*).

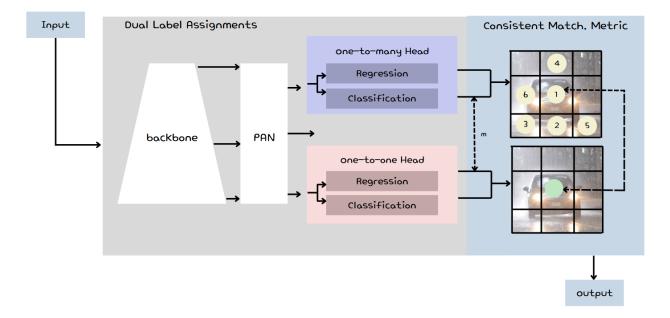


Figure 6: Architecture of YOLOv10

The conjoining of two heads allows the backbone to have optimal supervision ("YOLOv10: An Introduction"). While inference is employed to avoid inference cost, a one-to-many head is discarded and a one-to-one head is used, which beats Hungarian matching by utilising lesser training time (Xu et al.).

The final regression head takes the significance performance of YOLO compared to the classification head. We can reduce the overhead of the classification head without hurting the performance; therefore, a lightweight architecture is employed ("YOLOv10: Everything You Need to Know").

YOLOs use standard convolution stride to achieve spatial downsampling and channel transformation simultaneously. This raises computational costs and parameter counts. YOLOv10 decouples the spatial reduction and channel increase operations. Pointwise convolution is leveraged to modulate the dimension of the channel and further utilize depthwise convolution to achieve spatial downsampling. This maximises the information retained during downsampling as well as computational cost (*Xu et al.*).

Rank-guided block design scheme decreases the complexity of redundant stages; essentially making a compact model. Compact inverted block (CIB) adopts depthwise convolution for spatial mixing and pointwise convolutions. Rank-guided block allocation helps achieve maximum efficiency while also maintaining good capacity (*Xu et al.*).

3 Methodology

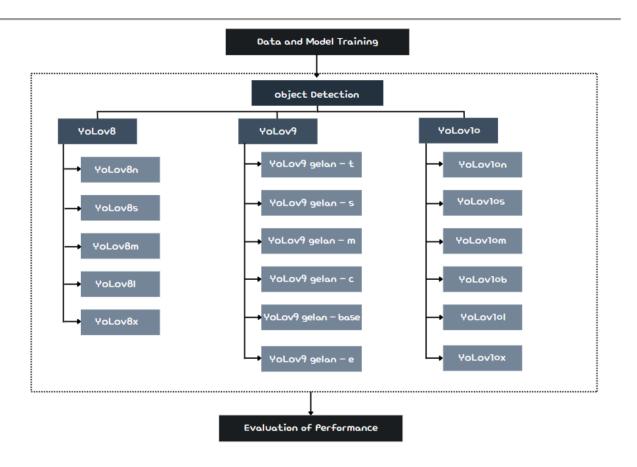
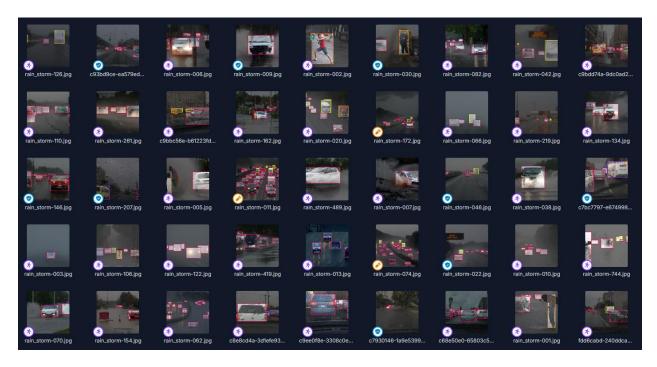



Figure 7: Flow chart of investigation to be proceeded

3.1 Dataset

Roboflow is an online directory of CV model resources, including datasets. It allows the download of these data sets through multiple version formats and these datasets can be easily integrated into Google Colaboratory through the use of APIs. BDD100K is another larger dataset comprising videos and still images of objects in adverse weather conditions. However, due to limitations in hardware along with Roboflow's ease of integrating datasets into Google Colaboratory and its service of cloud-based data storage, Roboflow was utilised for this investigation.

The selected public dataset "O.D IN BAD WEATHER "("Object Detection in Bad Weather Dataset") contains images of labelled subjects including Bikes, Buses, Cars, Motors, Persons and Riders. The dataset has innately been pre-processed using auto-orientation and resized to 640x640 pixels by its creator ("Foreign Object Aerodromes"). Furthermore, it is split into training (815 images) validation (218 images), and test (117 images) subsets.

Figure~8:~Visual~view~of~the~images~compiled~in~the~public~dataset~("Object~Detection~in~Bad~Weather~Dataset")

The dataset is integrated from Roboflow by the following snippet:

```
!pip install roboflow
from roboflow import Roboflow
rf = Roboflow(api_key="XXXXX")
project = rf.workspace("XXXXX").project("XXXXX")
version = project.version(x)
dataset = version.download("XX")
```

Figure 9: Integration of Roboflow API

3.2 Variables

During training, the following parameters were kept constant across each framework:

Parameter	Value
Epoch	25
Batch	16
img/imgz	640
Plots	true

Table 2: Showcases the parameters and chosen value

The dataset used remained constant throughout the investigation, with only the dataset version differing, which does not affect the final result; these variables act independently in this investigation.

The dependent variables are the obtained results from each framework post-training. These results are retrieved by visualising the trained models. The results are stored in the training results directory in the workspace and the visualization is accomplished using IPython.display. These raw results are then evaluated and compared against each other.

3.3 Evaluation Metrics

All models were evaluated using post-training results which are accessible in each model's results directory. All the results were measured using a constant evaluation metric. The following metrics were visualized:

- 1. Confusion Matrix
- 2. F1-Confidence Curve
- 3. Precision-Recall Curve
- 4. Precision-Confidence Curve
- 5. Recall-Confidence Curve

Additionally, overall model results were also visualized, including mean average precision (mAP), losses in validation, test and training datasets, precision and recall.

$$Precision = \frac{True Positive (TP)}{True Positive (TP) + False Positive (FP)}$$
[1]

$$Recall = \frac{True\ Positive\ (TP)}{True\ Positive\ (TP) + False\ Negative\ (FN)}$$
 [2]

$$F1 \ score = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$
 [3]

$$mAP = \frac{\Sigma_{j+1}^k APi}{k}$$
 [4]

Precision helps evaluate the robustness of the object detached whereas recall indicates the model's ability to be able to detect instances of concern in the data input. The **F1 score** helps us measure both precision and recall in a balanced manner. Finally, **mAP** helps compare the growth truth bounding box and the bounding box detected by the model. The **Confusion matrix** summarizes the performance of an ML model on a set data set and includes specifics such as classes also known as the error matrix.

A **confusion matrix** is usually structured through the use of:

- 1. True Positive (TP): Number of instances where the model had correctly predicted the positive classes
- 2. False Positive (FP): Number of instances where the model had incorrectly predicted positive classes. (Predicted positive, but the real class was negative.)
- 3. True Negative (TN): The number of instances where the model had correctly predicted the negative classes.
- 4. False Negative (FN): The number of instances where the model had incorrectly predicted negative classes. (Predicted negative, but the real class value was positive.)

Higher TP and TN values showcase the model's performance as well subsequently higher FP values suggest the model is making multiple mistakes.

3.4 Model Training

To proceed with training the frameworks; Cloud GPU provided by Google Colaboratory was utilized due to GPU limitations. The following details specify the GPU used:

+	NVID	IA-SMI	535.104.05						CUDA Versi	on: 12.2
	GPU Fan	Name Temp	Perf	Persiste Pwr:Usag	ence-M ge/Cap	Bus-Id 	Memor	Disp.A y-Usage	Volatile GPU-Util 	Uncorr. ECC Compute M. MIG M.
		Tesla 47C	T4 P8	9W /	Off	0000000	0:00:0	====== 4.0 Off 5360MiB	0%	0 Default N/A

Figure 10: details of GPU used for investigation

Each framework was run through constant parameters and visualised post-training.

3.4.1 YOLOv8

YOLOv8 was installed directly in the workspace using a pip function

```
!pip install ultralytics==8.0.196
from IPython import display
display.clear_output()
import ultralytics
ultralytics.checks()
```

Figure~11: Installation~of~YOLOv8

Subsequently, the dataset was imported to the workspace using RoboFlow. The dataset version used for this model was yolov8 and the training was conducted using the set parameters, as shown in the code snippet below.

```
!yolo task=detect mode=train model=yolov8s.pt
data=/content/datasets/O.D-IN-BAD-WEATHER-1/data.yaml epochs=25 imgsz=640
batch=16 plots=True
```

Figure 12: Data training on YOLOv8

Post the training, the model was visualised by outputting the training results.

3.4.2 YOLOv9

Despite the similarities with YOLOv8 while initializing the training process, due to the recent release of YOLOv9 it yet cannot be imported through a pip function, therefore the framework had to be cloned from its official GitHub repository.

```
!git clone https://github.com/SkalskiP/yolov9.git
%cd yolov9
!pip install -r requirements.txt -q
```

Figure 13: Installation of YOLOv9

Additionally, the YOLOv9 model at the current stage cannot download the weights directly, so they were manually downloaded from GitHub and stored separately in the workspace.

YOLOv9 can not automatically download the weights so they are manually downloaded

```
!wget -P {HOME}/weights -q
https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt
!wget -P {HOME}/weights -q
https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt
!wget -P {HOME}/weights -q
https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c.pt
!wget -P {HOME}/weights -q
https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-e.pt
```

Figure 14: Installation of YOLOv9 weights

The parameters were kept constant for YOLOv8, and the training results were extracted and visualized post-training.

```
%cd {HOME}/yolov9

!python train.py \
--batch 16 --epochs 25 --img 640 --device 0 \
--data {dataset.location}/data.yaml \
--weights {HOME}/weights/gelan-c.pt \
--cfg models/detect/gelan-c.yaml \
--hyp hyp.scratch-high.yaml
```

Figure 15: Data training on YOLOv9

3.4.3 YOLOv10

Similar to YOLOv9, the recent release of YOLOv10 means it cannot be downloaded using a pip function and hence it was to be imported by cloning its GitHub repository.

```
!pip install -q git+https://github.com/THU-MIG/yolov10.git
```

Figure 16: Installation of YOLOv10

Following this, the weights were manually downloaded and stored in the workspace separately.

```
!wget -P {HOME}/weights -q
https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10n.pt
!wget -P {HOME}/weights -q
https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10s.pt
!wget -P {HOME}/weights -q
https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10m.pt
!wget -P {HOME}/weights -q
https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10b.pt
!wget -P {HOME}/weights -q
https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10x.pt
!wget -P {HOME}/weights -q
https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov101.pt
```

Figure 17: Installation of YOLOv10 weights

The dataset was downloaded in the same manner similar to YOLOv9 and YOLOv8. However, the model version remained yolov9 due to the unavailability of a yolo10 data type version. This change did not affect the performance. YOLOv10 was trained using constant parameters and visualized post-training results.

```
!yolo task=detect mode=train epochs=25 batch=16 imgsz=640 plots=True \
model={HOME}/weights/yolov10n.pt \
data=/content/datasets/0.D-IN-BAD-WEATHER-1/data.yaml
```

Figure 18: Data training on YOLOv10

3.5 Hypothesis

This study hypothesises that YOLOv10 will outperform the other models in precision, especially for well-defined object classes like cars and motors. NMS-free strategy and dual-head architecture employed by YOLO will aid this. However, YOLOv8 may have a higher recall because of its CSPDarknet backbone and finally YOLOv9 will exhibit higher precision in detecting small or occluded objects due to the introduction of PGI and GELAN.

4 Results and Analysis

4.1 Tabular Representation

	Precision			Recall			mAP50		
Class	YOLOv8	YOLOv9	YOLOv10	YOLOv8	YOLOv9	YOLOv10	YOLOv8	YOLOv9	YOLOv10
All	0.677	0.475	0.658	0.263	0.377	0.192	0.286	0.378	0.203
Bike	0.603	0.334	1	0.04	0.12	0	0.7	0.115	0
Bus	0.523	0.424	0.418	0.425	0.525	0.275	0.412	0.469	0.288
Car	0.704	0.705	0.603	0.709	0.749	0.631	0.741	0.777	0.655
Motor	1	0.575	1	0	0.145	0	0.02	0.209	0.7
Person	0.498	0.454	0.301	0.261	0.355	0.198	0.285	0.348	0.171
Rider	1	0.372	1	0	0.211	0	0.081	0.286	0
Truck	0.414	0.461	0.288	0.403	0.532	0.242	0.369	0.445	0.203

Table 3: Comparison of YOLOv8, YOLOv9 and YOLOv10's performances regarding Precision, Recall and mAP50

Precision: YOLOv8 provides the highest Precision overall (0.677), compared to YOLOv9 (0.475) and YOLOv10 (0.658). YOLOv9 has the lowest overall precision, suggesting that it may produce more false positives, lastly, YOLOv10 has slightly lower precision than YOLOv8 but higher than YOLOv9, indicating YOLOv10 holding a balance.

Recall: YOLOv8 employs the lowest Recall (0.263) hence it misses more objects in the input; This could be a significant drawback in addressing adverse weather conditions. YOLOv9 has a higher Recall (0.377) than YOLOv8 but still is behind YOLOv10, indicating a better ability to detect in challenging environments. YOLOv10 has the highest recall (0.658), making it able to detect most objects which is crucial in adverse weather.

mAP50: YOLOv8 shows a middle-group performance in mAP50 (0.286) but is however outperformed by YOLOv9 (0.378), indicating YOLOv9 has better accuracy. Lastly, YOLOv10 has the lowest mAP (0.203), indicating that while it detects multiple objects, the accuracy of these predictions is lower compared to YOLOv9 and YOLOv8.

4.2 Graphical Representation

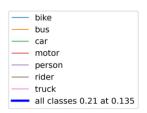
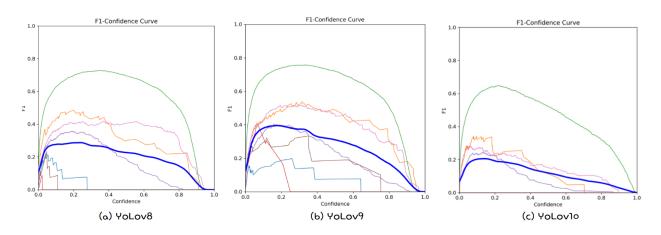
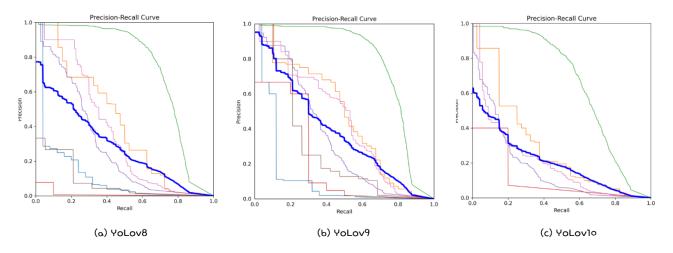



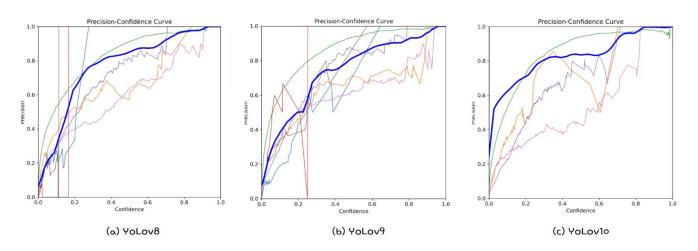
Figure 19: Colour coding for object classes

The image above showcases the colour assigned to each object class. The results graph each object class result on each evaluation metric.


4.2.1 F1-Confidence

Graph 1: Graphical Result of YOLOv8, YOLOv9 and YOLOv10 on F1-Confidence Curve

YOLOv9 stands out to be the most balanced model across all the classes, with a higher and more stable F1 score over a range of confidence levels. YOLOv10's tabular results reflect its generally lower F1 scores. YOLOv8 lastly, provides a more moderate performance, with less consistent F1 scores which makes this framework more consistent than YOLOv10 and less favourable compared to YOLOv9.


4.2.2 Precision on Recall

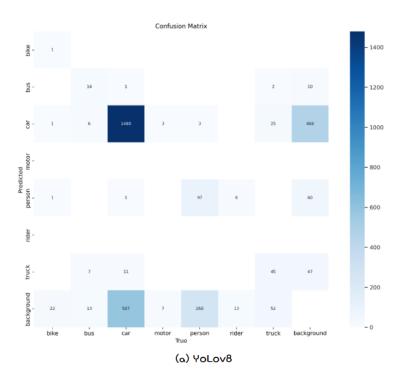
Graph 2: Graphical Result of YOLOv8, YOLOv9 and YOLOv10 on Precision/Recall Curve

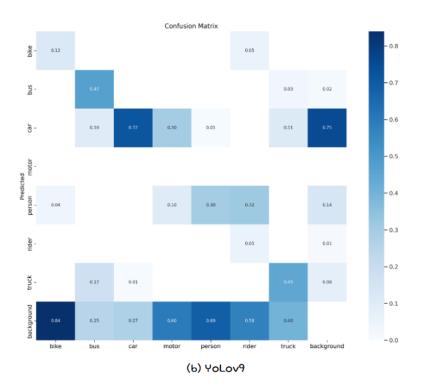
YOLOv9 exhibits its balance by offering the best trade-off between precision and recall across most object classes consequently YOLOv10 shows strong precision for certain classes but tends to lose precision rapidly as recall increases, particularly for smaller or more complex objects. Lastly, YOLOv8 is less consistent than YOLOv9 with a more significant drop in precision as recall increases across several classes.


4.2.3 Precision on Confidence

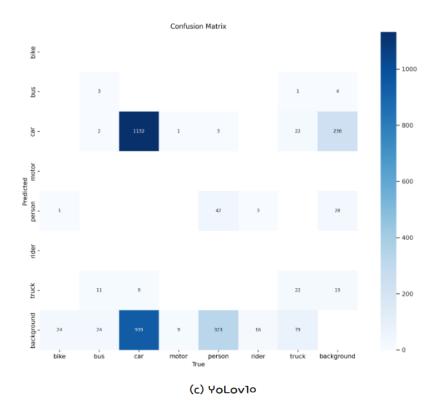
Graph 3: Graphical Result of YOLOv8, YOLOv9 and YOLOv10 on Precision/Confidence Curve

YOLOv9 is presented as the most balanced model, by showcasing consistent and dependable accuracy thresholds for the majority of object classes. YOLOv10 achieves excellent precision but with greater variability between classes; overall, its performance may be less consistent and more class-dependent. Lastly, while YOLOv8 performs reasonably well, YOLOv9 often outperforms it, particularly when it comes to consistency across various object classes.


4.2.4 Recall on Confidence


Graph 4: Graphical Result of YOLOv8, YOLOv9 and YOLOv10 on Recall/Confidence Curve

YOLOv9 once again is exhibited to be the most balanced, by maintaining higher recall across a range of confidence levels. YOLOv10 rapidly declines in recall as confidence increases, indicating a strong preference for high precision at the expense of recall. YOLOv8 generally struggles to maintain recall as the confidence is increased especially compared against YOLOv9


4.2.5 Confusion Matrix

Graph 5: Confusion Matrices of YOLOv8

Graph 6: Confusion Matrices of YOLOv8, YOLOv9 and YOLOv10

Graph 7: Confusion Matrices of YOLOv8, YOLOv9 and YOLOv10

YOLOv8 excels in predicting the class car but then showcases confusion with the background class and often misclassifies the background as car. YOLOv9 however improves this by offering a more balanced performance with normalized data regardless it does struggle with misclassification. Lastly, YOLOv10 outperforms the other models by maintaining overall accuracy and not consuming background with other classes, making it the most effective of the three of them.

4.3 Analysis

YOLOv8 has a high precision for classes such as Motor and Car and low precision for classes Bus and Truck this can be because of the CSPDarknet backbone as it is optimized for well-designed objects like cars and motors. Larger scale objects such as trucks could introduce challenges due to variability of size especially when distorted by adverse weather conditions.

Furthermore, reliance on convolutional layers, which are effective for high-contrast features may be the cause of low recall as high-contrast features are diminished by adverse conditions. Additionally, YOLOv8's anchor-free detection can make the model less reliable regardless of increasing the speed of detections.

The C2f model in YOLOv8 combines high-level features with context which can be effective in environments which are high in contrast and clear. However, given a dataset with distortions for this investigation, YOLOv8 is unable to maintain a balance in mAP50. It becomes low in classes where these distortions are more pronounced.

The use of anchor-free detection may have caused YOLOv8 to struggle with objects whose position and size vary unpredictably this directly contributes to the steep in the recall furthermore, the confusion matrix showcases misclassification between objects and the background, especially for Truck, this can be justified because of the use of CSPDarknet which is generally excellent for extracting complex features and hence there is a chance that noise and other elements could have confused the architecture to pick it up as well and in return why the model confuses objects such as trucks with the background.

YOLOv9 shows variability in precision-recall curves, and includes sharp declines in classes like Bike and Person– though YOLOv9 can maintain high precision it struggles with recall, especially in challenging detection scenarios. This is possible due to the introduction of PGI– which can affect gradient stability and make the model more sensitive to confidence thresholds.

YOLOv9 exhibits more fluctuation in the precision/confidence curve, especially at lower confidence levels—GELAN's impact could have led to affect gesture aggregation, which may not always provide constant gesture quality across different classes, in return, this could lead to the precision and confidence variability. Similarly, the recall/confidence curve also showcases a noticeable sharp drop in YOLOv9 in recall as confidence increases—This suggests the model is cautious in its detections when operating under high confidence thresholds.

Achieving high true positive rates for Cars and trucks but also showing confusion in the background category, particularly in bike and motor can be justified due to the model's sensitivity to background features whilst using GELAN—which aggregates features from different scales but doesn't effectively separate foreground objects from the background. Higher cross-entropy losses for these classes define the model's struggle with class separability, particularly under the noise of adverse conditions.

YOLOv10 exhibits a conservative precision-recall trade-off. This is evident in the sharp decline of recall as precision increases— the NMS-free strategy employed can likely be the cause of this, which optimizes precision by eliminating overlapping detections but this costs the recall.

The weighting on precision may cause the model to prioritise certain high-confidence predictions which can lead to a low recall, especially for objects that are harder to detect—for example, objects smaller in size or covered by fog or adverse factors.

The dual head architecture could reason for the model's high precision at higher confidence and variability of precision at lower confidence—the model might over-prune detection from one-to-many heads during inference. Consequently, the recall/confidence curve showcases the decline of YOLOv10—this is because the model sacrifices recall to ensure higher precision. Decoupling of spatial and channel operations may also contribute to this making the model less sensitive to details which is necessary for detecting smaller objects.

The Confusion matrix suggests that YOLOv10 shows significant confusion in the background particularly with smaller classes such as Person and Motor. YOLOv10 reduces post-processing through NMS-free strategies this can contribute to filtering out lower confidence detection that would otherwise be true positives. The higher rates of false positives specifically in the background can be justified by the confidence-weighted prediction strategy where the model focuses on precision during inference and could lead to overconfidence in background misclassifications.

5 Conclusion

From this investigation, it was interpreted that in the evolution of frameworks from YOLOv8 to YOLOv10, there is a trend towards refining precision and recall. YOLOv9 serves substantial improvements compared to YOLOv8 making it robust for a wide range of OD tasks, especially in challenging environments. Technically, even though YOLOv10 is more advanced, it does not justify its performance. Given the evidence from the results, generally, YOLOv9 is suggested for OD in bad weather due to its balance and reliability compared to other models used in this investigation. However, in conclusion after the result analysis, the best model does not exist and can only be generalised. To gain maximum benefit, it is recommended to consider the performance of these frameworks to be case-dependent. YOLOv10 can be considered for specialized scenarios such as situations where the need for high precision is required, high confidence environments and environments with low complexity.

6 Further Scope

According to this investigation; resulted in a sequence of best-performing to least-performing frameworks. There is scope to implement multiple framework models in a singular workspace aimed at one task and leverage the importance of each model's output to be case-dependent, similar to how weights work in a neural network— this approach could help the rescue robot not be

dependent on a singular framework rather multiple working frameworks which are enhanced in a particular field such as precision.

7 Limitations and Challenges

The investigation would have been carried out to be more sophisticated perhaps if the dataset was not too small. It is hard to generalise and train a model using a small dataset. The BDDK100 dataset was not used to due poor computational power and hardware limitations. Furthermore, the usage of other modes of data types such as videos and other multimodal options would have further enhanced the integrity of this research but it was not proceeded with due to yet again limitations of resources, hence the investigation improvised to providing investigation upon a smaller data set with only still-images which gives rise for further studies in the future.

It took plentiful hours to find the dataset which matched this investigation's aim in addition to more time spent playing around with Google Colaboratory and the framework implementation and numerous inferences and model training to be done before this investigation.

The lack of proper documentation which YOLOv10 held made it immensely hard to be able to understand the architecture of the model. However, through the use of official documents, the GitHub repository and a few research journals this was made possible. Highlighting the extensive time taken to evaluate each research before referencing through their acceptance in terms of peer review and citations.

8 Bibliography

Flynn, Helen, et al. "Machine Learning Applied to Object Recognition in Robot Search and Rescue Systems." *ResearchGate*, 20, https://www.researchgate.net/profile/Helen-Flynn/publication/224773218 Machine Learning Applied to Object Recognition in Robot S earch_and_Rescue_Systems/links/5440edd50cf2ebb036905a88/Machine-Learning-Applied-to-Object-Recognition-in-Robot-Search-and-Rescue-Systems.pdf. Accessed 1 April. 2024.

"Computer Vision." IBM, https://www.ibm.com/topics/computer-vision. Accessed 4 April. 2024.

Li, H., and L. S. Luo. "A Critical Review of Multiphase Flow Simulation Using the Lattice Boltzmann Method." *Archives of Computational Methods in Engineering*, 2019 https://link.springer.com/article/.07/s11831-018-09312-w. Accessed 1 June. 2024.

"Machine Learning Frameworks." *GeeksforGeeks*, 23 May 2023, https://www.geeksforgeeks.org/machine-learning-frameworks/. Accessed 3 May 2024.

"Fukushima Daiichi Accident." *World Nuclear Association*, June 2023, https://world-nuclear.org/information-library/safety-and-security/safety-of-plants/fukushima-daiichi-accident. Accessed 2 June. 2024.

Westcott, Lucy. "Robots Sent into Fukushima Have 'Died.'" *Newsweek*, Mar. 2016, https://www.newsweek.com/robots-sent-fukushima-have-died-435332. Accessed 5 June. 2024.

Li, Qiang, et al. "An Overview of the Cuckoo Search Algorithm and Its Applications." *Proceedings of the IEEE*, 2011, https://ieeexplore.ieee.org/document/5876227. Accessed 5 June. 2024.

Toma, David, et al. "Comprehensive Survey of Machine Learning-Based Prediction Models for the Solar Energy System and Evaluations of Solar Irradiance." *Neurocomputing*, 2022 https://www.sciencedirect.com/science/article/pii/S0924271622003367. Accessed 5 June. 2024.

Wang, Cheng, et al. "A Review of Machine Learning Applications in Wireless Networks: Algorithms, Datasets, and Results." *arXiv*, 19 Jul. 2019, https://arxiv.org/abs/1907.09408. Accessed 5 May 2024.

LeCun, Yann, et al. "Gradient-Based Learning Applied to Document Recognition." *Proceedings of the IEEE*, ResearchGate, https://www.researchgate.net/publication/2985446 Gradient-Based Learning Applied to Document Recognition. Accessed 25 June 2024.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep Learning." *Nature*, 2015, https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf. Accessed 2 April 2024.

Jain, Avijit. *MIT Deep Learning Book PDF*. GitHub, https://github.com/janishar/mit-deep-learning-book-pdf. Accessed 25 June 2024.

"References for Papers." *Scientific Research Publishing*, https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1308330. Accessed 25 June 2024.

Chollet, François. "Xception: Deep Learning with Depthwise Separable Convolutions." *IEEE Xplore*, 2017, https://ieeexplore.ieee.org/document/7780459. Accessed 7 January 2024.

Tian, Zhi, et al. "FCOS: Fully Convolutional One-Stage Object Detection." *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2019, https://openaccess.thecvf.com/content_ICCV_2019_paper.html. Accessed 15 July 2024.

Redmon, Joseph, and Ali Farhadi. "YOLO9000: Better, Faster, Stronger." *arXiv*, 2017, https://ar5iv.labs.arxiv.org/html/1704.04861. Accessed 15 July 2024.

Odena, Augustus, et al. "Deconvolution and Checkerboard Artifacts." *Distill*, 2016, https://distill.pub/2016/deconv-checkerboard/. Accessed 15 July 2024.

Wang, Chien-Yao, et al. "CSPNet: A New Backbone that Can Enhance Learning Capability of CNN." *NYCU Scholar*, https://scholar.nycu.edu.tw/en/publications/cspnet-a-new-backbone-that-can-enhance-learning-capability-of-cnn. Accessed 15 July 2024

Hirschfeld, Gerrit, and Ulf Ziemann. "Neuroplasticity and Functional Recovery After Stroke: Evidence from TMS and fMRI." *PubMed*, 2015, https://pubmed.ncbi.nlm.nih.gov/26353135/. Accessed 15 July 2024.

He, Tong, et al. "Bag of Tricks for Image Classification with Convolutional Neural Networks." arXiv, 2017, https://arxiv.org/abs/1711.06897/. Accessed 15 July 2024.

Zhou, Zheng, et al. "Multi-Scale Feature Attention for Person Re-Identification." *Lecture Notes in Computer Science (LNCS)*, vol. 12335, Springer, 2020 https://link.springer.com/chapter/.07/978-3-030-58452-8_13. Accessed 15 July 2024.

Szegedy, Christian, et al. "Going Deeper with Convolutions." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2015, https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html. Accessed 15 July 2024.

Sanderson, Grant. "Neural Networks." *BlueBrown*, https://www.3blue1brown.com/lessons/neural-networks. Accessed 7 January 2024.

Redmon, Joseph, et al. "You Only Look Once: Unified, Real-Time Object Detection." *arXiv*, 8 Jun. 2015, https://arxiv.org/abs/1506.02640. Accessed 7 June 2024.

Chen, Zhenyu, et al. "An Extensive Survey on Vision Transformers: Transforming Vision for Better Future." *arXiv*, 5 Jul. 2024, https://arxiv.org/html/2407.02988v1#S3. Accessed 7 June 2024.

Kingma, Diederik P., and Jimmy Ba. "Adam: A Method for Stochastic Optimization." *arXiv*, 3 Mar. 2015, https://arxiv.org/abs/1503.02406. Accessed 7 June 2024.

Wang, Alex, et al. "GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding." *arXiv*, 22 Oct. 2020, https://arxiv.org/abs/20.11929. Accessed 8 June 2024.

Nijkamp, Erik, et al. "A Survey on Visual Prompt Learning." *arXiv*, 23 Dec. 2022, https://arxiv.org/abs/2212.11696. Accessed 8 June 2024.

Jiang, Zhengkai, et al. "Text2Human: Text-Driven Controllable Human Image Generation." *arXiv*, 9 Nov. 2022, https://arxiv.org/abs/2211.04800. Accessed 7 June 2024.

Zhou, Xiangning, et al. "OpenXGPT: An Open-Source Instruction-Following Language Model." *arXiv*, 27 Feb. 2024, https://arxiv.org/pdf/2402.13616. Accessed 7 June 2024.

Ramesh, Aditya, et al. "Zero-Shot Text-to-Image Generation." *arXiv*, May 2021, https://arxiv.org/abs/25.04206. Accessed 7 June 2024.

Jiang, Zhengkai, et al. "Text2Human: Text-Driven Controllable Human Image Generation." *arXiv*, 9 Nov. 2022, https://arxiv.org/abs/2211.04800. Accessed 7 June 2024.

Srivastava, Rupesh Kumar, et al. "Highway Networks." *arXiv*, 15 Jun. 2015, https://arxiv.org/abs/1506.04878. Accessed 8 June 2024.

Raffel, Colin, et al. "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer." *arXiv*, 26 May 2020, https://arxiv.org/abs/2005.12872. Accessed 8 June 2024.

Viana, André Lucas. "Hungarian-Loss: A Python Library for the Hungarian Algorithm." *PyPI*, https://pypi.org/project/hungarian-loss/. Accessed 9 June. 2024.

Vaswani, Ashish, et al. "Scaling Vision Transformers." *arXiv*, 17 Aug. 2021, https://arxiv.org/abs/28.07755. Accessed 9 June. 2024.

"YOLOv10 Documentation." *Ultralytics*, https://docs.ultralytics.com/models/yolov10/. Accessed 15 June 2024.

Xu, Ming, et al. "Emerging Trends in Large Language Models: A Survey." *arXiv*, 25 May 2024, https://arxiv.org/pdf/2405.14458. Accessed 15 June . 2024.

"YOLOv:10 An Introduction to the Latest Version of YOLO." *LearnOpenCV*, https://learnopencv.com/yolov10/. Accessed 15 June . 2024.

"YOLOv10: Everything You Need to Know." *Roboflow Blog*, 25 July 2023, https://blog.roboflow.com/what-is-yolov10/. Accessed 15 June 2024.

"Object Detection in Bad Weather Dataset." *Roboflow Universe*, https://universe.roboflow.com/foreignobjectaerodromes/o.d-in-bad-weather/dataset/1. Accessed 15 June 2024.

"Foreign Object Aerodromes." *Roboflow Universe*, https://universe.roboflow.com/foreignobjectaerodromes. Accessed 15 June. 2024.

Hinton, Geoffrey E., et al. "Improving Neural Networks by Preventing Co-adaptation of Feature Detectors." *arXiv*, 24 Jun. 2012, https://arxiv.org/abs/1206.5538. Accessed 19 June 2024.

Karn, Ujjwal. "Ujjwal Karn's Blog." *Ujjwalkarn.me*, https://ujjwalkarn.me/. Accessed 19 June 2024.

Liu, Zhuang, et al. "Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows." *arXiv*, 8 Jul. 2021, https://arxiv.org/abs/27.04191. Accessed 19 June 2024.

Devlin, Jacob, et al. "BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding." *arXiv*, 8 Sep. 2018, https://arxiv.org/abs/1809.03193. Accessed 19 June 2024.

Simonyan, Karen, and Andrew Zisserman. "Very Deep Convolutional Networks for Large-Scale Image Recognition." 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2015 https://ieeexplore.ieee.org/document/7005506. Accessed 19 June 2024.

Touvron, Hugo, et al. "Training Data-Efficient Image Transformers and Distillation Through Attention." *arXiv*, 23 Apr. 2020, https://arxiv.org/abs/2004.934. Accessed 19 June 2024.

Ahmed, Sameer, et al. "A Review on YOLOv8 and Its Advancements." *ResearchGate*, 2024, https://www.researchgate.net/publication/377216968 A Review on YOLOv8 and Its Advancements. Accessed 25 June 2024.

9 Appendices

9.1 Appendix A: Terminology

Terminology	Definition
Multimodal	Integration of multiple data types.
Grid Matrix	Division of an image into separate grid cells.
Bounding boxes	Boxes which are used to localize and locate objects in an image are defined by coordinates.
Deep Neural Networks	Neural network with multiple hidden layers between input and output.
Computation	Process of performing calculations through technology
Information retainment	The ability of a NN to retain information to utilize later
Cloud-based data storage	Storing data on remote servers which are accessed via the internet
API keys	Identifiers which are used to authenticate access to a program

Table 1: Additional basic terminology

9.2 Appendix B: Background

9.2.1 Artificial Neural Networks (NNs)

A neuron contains data and each neuron contains different activation values in essence the activation value decides upon the significance of the neuron (*Sanderson*). The more significant a neuron it is likely to increase significance of the neuron subsequently to the neuron forward, the less significant the neuron is cancelled out. Assigning weights to neuron connections between

layers helps classify and manually tweak the significance of each neuron to be specific about results (Sanderson).

$$w_1 a_1 + w_2 a_2 + w_3 a_3 + \dots + w_n a_n$$
 [1]

The above equation describes the addition of weight (*Sanderson*). The weighted sum would give the specific feature which is looked up for. Each neuron consists of biases which is a scalar value added to the weighted sum before passing the result through an activation function which is used to adjust the output of each neuron along with the weighted inputs.

9.2.2 Convolutional Neural Networks (CNNs)

Computer vision involves the computer interpreting stimuli from its environment-- to achieve this a CNN is used. CNN helps interpret visual data on a sophisticated basis. There are multiple ways to interpret data such as; Object recognition, detection or segmentation.

Classification

Classification & Localization

Multiple Detection

Figure 1: Classification, Localization and Segmentation Visualization

CNN is implemented through the use of "blocks" of convolution, it is essential to define Kernels/filters as wanted to be able to feature extract effectively (*Hinton et al.*). Kernels and Filters

describe small matrices used for convolutional operations. They help detect specific features in input data.

$$q_i^l = f(b_i^l + \sum_{j=0}^{d-1} w_{ij} \times x_j + j)$$
 [1]

$$q_{ij}^{l} = f\left(b_{ij} + \sum_{k=0}^{d_1} \sum_{m=0}^{d_2} w_{(i+k)(j+m)}^{x_{(i+k)(j+m)}}\right)$$
[2]

Equation [1] The equation calculates the output q_{ij}^l of a neuron by applying intended activation f to the weighted sum of its inputs plus the bias, with an additional term j included. q_{ij}^l represents the output of a neuron i in layer l. b_{ij}^l represents the bias which has been added to the weighted sum of inputs. Equation [2] describes a neuron in a CNN where the output is calculated by applying the activation function to the sum of weighted inputs like [1] but over a local receptive field. The double summation reflects the process of convolving a filter across the input space to compute the neuron's output.

The output undergoes pooling to aggregate an emphasis on key features, achieved by reducing the spatial dimensions. Various pooling techniques are available such as average pooling, sum pooling, and max pooling (*Karn*).

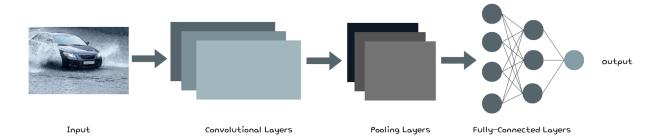


Figure 2: General structure of a CNN

(*Liu et al.*) Single-stage detectors identify objects in a single pass and hence remove the necessity for a separate region proposal step (like R-CNN). By employing multiple convolutional feature maps and varying scales for bounding box predictions, these detectors can effectively identify objects of different sizes and shapes in a single forward pass. Examples of single-shot detectors include the YOLO framework (*Devlin et al.*)

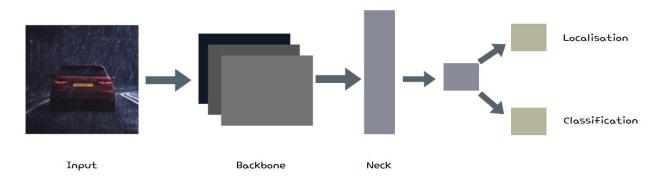


Figure 3: Abstract architecture of a single-stage object detector

9.3 Appendix D: Investigation Code

Training YOLOv8

```
GPU access verification
In [1]: Invidia-smi
    Tue Aug 6 15:47:43 2024
     NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 1
     2.2
    GPU Name
                       Persistence-M | Bus-Id
                                           Disp.A | Volatile Uncor
     r. ECC
    Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Comp
    ute M.
     ------
                             Off | 80000000:80:84.0 Off |
     0 Tesla T4
    0 |
    N/A 47C P8 9W / 78W | 8MIB / 15368MIB | 8% D
    efault |
    N/A
     Processes:
     GPU GI CI PID Type Process name
                                                          GPU
     Memory
          ID ID
        . 1
    No running processes found
In [2]: import os
      HOME = os.getcwd()
      print(HOME)
     /content
     Installation of YOLOv8 ( pip )
In [3]: | Ipip install ultralytics==8.0.196
      from IPython import display
      display.clear_output()
      import ultralytics
      ultralytics.checks()
```

```
Ultralytics YOLOv8.0.196 

✓ Python-3.10.12 torch-2.3.1+cu121 CUDA:0 (Tesla T4, 1
       5102MiB)
       Setup complete (2 CPUs, 12.7 GB RAM, 33.6/78.2 GB disk)
In [4]: | from ultralytics import YOLO
         from IPython.display import display, Image
        Dataset Upload
In [5]: | Imkdir {HOME}/datasets
         %cd {HOME}/datasets
       /content/datasets
In [6]: | !pip install roboflow
         from roboflow import Roboflow
         rf = Roboflow(api_key="jPCXLMBZJU137MRBek9F")
         project = rf.workspace("foreignobjectaerodromes").project("o.d-in-bad-weather")
         version = project.version(1)
         dataset = version.download("yolov8")
       Collecting roboflow
         Downloading roboflow-1.1.37-py3-none-any.whl.metadata (9.4 kB)
       Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages
       (from roboflow) (2024,7,4)
       Collecting chardet==4.0.0 (from roboflow)
        Downloading chardet-4.0.0-py2.py3-none-any.whl.metadata (3.5 kB)
       Requirement already satisfied: idna==3.7 in /usr/local/lib/python3.10/dist-packag
       es (from roboflow) (3.7)
       Requirement already satisfied: cycler in /usr/local/lib/python3.10/dist-packages
       (from roboflow) (0.12.1)
       Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dis
       t-packages (from roboflow) (1.4.5)
       Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packa
       ges (from roboflow) (3.7.1)
       Requirement already satisfied: numpy>=1.18.5 in /usr/local/lib/python3.10/dist-pa
       ckages (from roboflow) (1.26.4)
       Requirement already satisfied: opencv-python-headless==4.10.0.84 in /usr/local/li
       b/python3.10/dist-packages (from roboflow) (4.10.0.84)
       Requirement already satisfied: Pillow>=7.1.2 in /usr/local/lib/python3.10/dist-pa
       ckages (from roboflow) (9.4.0)
       Requirement already satisfied: python-dateutil in /usr/local/lib/python3.10/dist-
       packages (from roboflow) (2.8.2)
       Collecting python-dotenv (from roboflow)
        Downloading python_dotenv-1.0.1-py3-none-any.whl.metadata (23 kB)
       Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-package
       s (from roboflow) (2.31.0)
       Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (fr
       om roboflow) (1.16.0)
       Requirement already satisfied: urllib3>=1.26.6 in /usr/local/lib/python3.10/dist-
       packages (from roboflow) (2.0.7)
       Requirement already satisfied: tqdm>=4.41.0 in /usr/local/lib/python3.10/dist-pac
       kages (from roboflow) (4.66.4)
       Requirement already satisfied: PyYAML>=5.3.1 in /usr/local/lib/python3.10/dist-pa
       ckages (from roboflow) (6.0.1)
       Collecting requests-toolbelt (from roboflow)
        Downloading requests_toolbelt-1.0.0-py2.py3-none-any.whl.metadata (14 kB)
       Collecting filetype (from roboflow)
        Downloading filetype-1.2.0-py2.py3-none-any.whl.metadata (6.5 kB)
       Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist
       -packages (from matplotlib->roboflow) (1.2.1)
       Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dis
```

```
t-packages (from matplotlib->roboflow) (4.53.1)
       Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-
       packages (from matplotlib->roboflow) (24.1)
       Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist
       -packages (from matplotlib->roboflow) (3.1.2)
       Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python
       3.10/dist-packages (from requests->roboflow) (3.3.2)
       Downloading roboflow-1.1.37-py3-none-any.whl (76 kB)
                                                 - 76.9/76.9 kB 3.9 MB/s eta 0:00:00
       Downloading chardet-4.0.0-py2.py3-none-any.whl (178 kB)
                                                  · 178.7/178.7 kB 11.9 MB/s eta 0:00:00
       Downloading filetype-1.2.0-py2.py3-none-any.whl (19 kB)
       Downloading python_dotenv-1.0.1-py3-none-any.whl (19 kB)
       Downloading requests_toolbelt-1.0.0-py2.py3-none-any.whl (54 kB)
                                                  - 54.5/54.5 kB 4.5 MB/s eta 0:00:00
       Installing collected packages: filetype, python-dotenv, chardet, requests-toolbel
       t, roboflow
         Attempting uninstall: chardet
           Found existing installation: chardet 5.2.0
           Uninstalling chardet-5.2.0:
             Successfully uninstalled chardet-5.2.0
       Successfully installed chardet-4.0.0 filetype-1.2.0 python-dotenv-1.0.1 requests-
       toolbelt-1.0.0 roboflow-1.1.37
       loading Roboflow workspace...
       loading Roboflow project...
       Downloading Dataset Version Zip in O.D-IN-BAD-WEATHER-1 to yolov8:: 100%
       75164/75164 [00:01<00:00, 42494.88it/s]
       Extracting Dataset Version Zip to O.D-IN-BAD-WEATHER-1 in yolov8:: 180%
       2312/2312 [00:00<00:00, 4936.68it/s]
        Training with Dataset
In [5]: %cd {HOME}
         !yolo task=detect mode=train model=yolov8s.pt data=/content/datasets/0.D-IN-BAD
       /content
       New https://pypi.org/project/ultralytics/8.2.74 available 👙 Update with 'pip in
       stall -U ultralytics
       Ultralytics Y0L0v8.0.196 🚀 Python-3.10.12 torch-2.3.1+cu121 CUDA:0 (Tesla T4, 1
       5102MiB)
       engine/trainer: task=detect, mode=train, model=yolov8s.pt, data=/content/dataset
       s/O.D-IN-BAD-WEATHER-1/data.yaml, epochs=25, patience=50, batch=16, imgsz=640, sa
       ve=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=
       None, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, dete
       rministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resu
       me=False, amp=True, fraction=1.0, profile=False, freeze=None, overlap_mask=True,
       mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=Fals
       e, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=Non
       e, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=Tru
       e, show_conf=True, vid_stride=1, stream_buffer=False, line_width=None, visualize=
       False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes
       =True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False
       e, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, moment
       um=0.937, weight decay=0.0005, warmup epochs=3.0, warmup momentum=0.8, warmup bia
       s_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nb
       s=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, s
       hear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_pa
       ste=0.0, cfg=None, tracker=botsort.yaml, save_dir=runs/detect/train3
       Downloading https://ultralytics.com/assets/Arial.ttf to '/root/.config/Ultralytic
       s/Arial.ttf'...
       100% 755k/755k [00:00<00:00, 21.4MB/s]
       2024-08-06 15:51:53.010289: E external/local xla/xla/stream executor/cuda/cuda ff
       t.cc:485] Unable to register cuFFT factory: Attempting to register factory for pl
       ugin cuEET when one has already been registered
```

```
2024-08-06 15:51:53.244881: E external/local_xla/xla/stream_executor/cuda/cuda_dn
n.cc:8454] Unable to register cuDNN factory: Attempting to register factory for p
lugin cuDNN when one has already been registered
2024-08-06 15:51:53.311034: E external/local_xla/xla/stream_executor/cuda/cuda_bl
as.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for
plugin cuBLAS when one has already been registered
Overriding model.yaml nc=80 with nc=7
```

params module

from n

```
arguments
                    -1 1
                                928 ultralytics.nn.modules.conv.Conv
[3, 32, 3, 2]
                    -1 1
                              18560 ultralytics.nn.modules.conv.Conv
[32, 64, 3, 2]
                    -1 1
                              29056 ultralytics.nn.modules.block.C2f
[64, 64, 1, True]
                    -1 1
                              73984 ultralytics.nn.modules.conv.Conv
[64, 128, 3, 2]
                             197632 ultralytics.nn.modules.block.C2f
                    -1 2
[128, 128, 2, True]
                    -1 1
                             295424 ultralytics.nn.modules.conv.Conv
[128, 256, 3, 2]
                    -1 2
                             788480 ultralytics.nn.modules.block.C2f
[256, 256, 2, True]
                    -1 1
                            1180672 ultralytics.nn.modules.conv.Conv
[256, 512, 3, 2]
                    -1 1
                            1838080 ultralytics.nn.modules.block.C2f
[512, 512, 1, True]
                    -1 1
                             656896 ultralytics.nn.modules.block.SPPF
[512, 512, 5]
10
                    -1 1
                                  0 torch.nn.modules.upsampling.Upsample
[None, 2, 'nearest']
11
               [-1, 6] 1
                                  0 ultralytics.nn.modules.conv.Concat
[1]
                    -1 1
                             591360 ultralytics.nn.modules.block.C2f
12
[768, 256, 1]
                    -1 1
                                  0 torch.nn.modules.upsampling.Upsample
13
[None, 2, 'nearest']
              [-1, 4] 1
                                  0 ultralytics.nn.modules.conv.Concat
14
[1]
15
                    -1 1
                             148224 ultralytics.nn.modules.block.C2f
[384, 128, 1]
                    -1 1
                             147712 ultralytics.nn.modules.conv.Conv
16
[128, 128, 3, 2]
              [-1, 12] 1
17
                                  0 ultralytics.nn.modules.conv.Concat
[1]
                    -1 1
                             493056 ultralytics.nn.modules.block.C2f
18
[384, 256, 1]
                    -1 1
                             590336 ultralytics.nn.modules.conv.Conv
19
[256, 256, 3, 2]
               [-1, 9] 1
20
                                  0 ultralytics.nn.modules.conv.Concat
[1]
21
                    -1 1 1969152 ultralytics.nn.modules.block.C2f
[768, 512, 1]
          [15, 18, 21] 1 2118757 ultralytics.nn.modules.head.Detect
22
[7, [128, 256, 512]]
Model summary: 225 layers, 11138309 parameters, 11138293 gradients, 28.7 GFLOPs
Transferred 349/355 items from pretrained weights
TensorBoard: Start with 'tensorboard --logdir runs/detect/train3', view at htt
p://localhost:6006/
Freezing layer 'model.22.dfl.conv.weight'
AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...
Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8
n.pt to 'yolov8n.pt'...
100% 6.23M/6.23M [00:00<00:00, 135MB/s]
WARNING A NMS time limit 0.550s exceeded
```

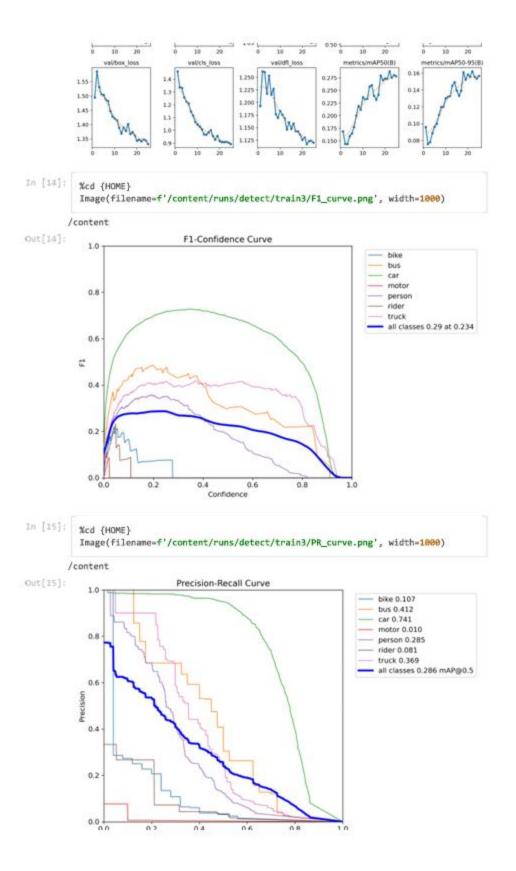
```
AMP: checks passed <
train: Scanning /content/datasets/0.D-IN-BAD-WEATHER-1/train/labels... 815 image
s, 5 backgrounds, 0 corrupt: 100% 815/815 [00:00<00:00, 2077.86it/s]
train: New cache created: /content/datasets/O.D-IN-BAD-WEATHER-1/train/labels.cac
INFO:albumentations.check_version:A new version of Albumentations is available:
1.4.13 (you have 1.4.12). Upgrade using: pip install -U albumentations. To disabl
e automatic update checks, set the environment variable NO ALBUMENTATIONS UPDATE
to 1.
/usr/local/lib/python3.10/dist-packages/albumentations/core/composition.py:161: U
serWarning: Got processor for bboxes, but no transform to process it.
  self._set_keys()
albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=
(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8,
8))
/usr/lib/python3.10/multiprocessing/popen_fork.py:66: RuntimeWarning: os.fork() w
as called. os.fork() is incompatible with multithreaded code, and JAX is multithr
eaded, so this will likely lead to a deadlock.
  self.pid = os.fork()
val: Scanning /content/datasets/O.D-IN-BAD-WEATHER-1/valid/labels... 218 images,
2 backgrounds, 0 corrupt: 100% 218/218 [00:00<00:00, 1589.12it/s]
val: New cache created: /content/datasets/O.D-IN-BAD-WEATHER-1/valid/labels.cache
Plotting labels to runs/detect/train3/labels.jpg...
optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and d
etermining best 'optimizer', 'lr0' and 'momentum' automatically...
optimizer: AdamW(lr=0.000909, momentum=0.9) with parameter groups 57 weight(decay
=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)
Image sizes 640 train, 640 val
Using 2 dataloader workers
Logging results to runs/detect/train3
Starting training for 25 epochs...
               GPU_mem box_loss cls_loss dfl_loss Instances
                                                                         Size
      Epoch
      1/25
                4.346
                          1.577
                                       2.238
                                                  1.275
                                                               282
                                                                          640: 10
0% 51/51 [00:35<00:00, 1.45it/s]
                 Class
                                                                        mAP50 mA
                          Images Instances
                                                  Box(P
                                                                 R
P50-95): 100% 7/7 [00:04<00:00, 1.74it/s]
                              218
                                                  0.696
                   all
                                                             0.169
                                                                         0.169
0.096
              GPU_mem box_loss cls_loss
                                               dfl_loss Instances
      Epoch
                                                                         Size
       2/25
                4.266
                         1.444
                                       1.273
                                                  1.203
                                                                          640: 10
                                                               239
0% 51/51 [00:19<00:00, 2.63it/s]
                                                                        mAP50 mA
                 Class
                         Images Instances
                                                  Box(P
P50-95): 100% 7/7 [00:03<00:00, 2.02it/s]
                   all
                              218
                                        2666
                                                  0.616
                                                             0.166
                                                                         9.144
0.0758
      Epoch
               GPU_mem
                         box_loss cls_loss
                                               dfl_loss Instances
                                                                         Size
       3/25
                 4.23G
                            1.483
                                       1.297
                                                  1.241
                                                               249
                                                                          640: 10
0% 51/51 [00:21<00:00,
                        2.43it/s1
                 Class
                           Images Instances
                                                  Box(P
                                                                 R
                                                                        mAP50 mA
P50-95): 100% 7/7 [00:02<00:00, 2.43it/s]
                              218
                   a11
                                                  0.631
                                                             0.134
                                                                         0.144
0.0781
      Epoch
              GPU mem
                        box loss
                                    cls loss
                                               dfl loss Instances
                                                                         Size
       4/25
                4.296
                          1.511
                                       1.267
                                                  1.239
                                                               159
                                                                          640: 10
0% 51/51 [00:19<00:00, 2.60it/s]
                          Images Instances
                                                                        mAP50 mA
                 Class
                                                  Box(P
                                                                 R
P50-95): 100% 7/7 [00:02<00:00, 2.59it/s]
                   all
                              218
                                        2666
                                                  0.626
                                                             0.162
                                                                         0.159
0.0888
               GPU mem box loss
                                  cls_loss
                                              dfl loss Instances
                                                                         Size
      Epoch
       5/25
                4.146
                         1.443
                                       1.184
                                                  1.193
                                                               194
                                                                          640: 10
0% 51/51 [00:20<00:00, 2.54it/s]
```

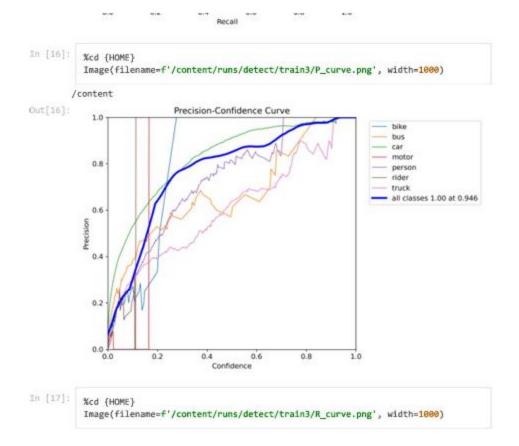
					Box(P	R	mAP50	mA
P50-95):	100%	7/7 [00:0 all	4<00:00, 1 218	the state of the s	0 664	0 176	0.166	
0.0961		qII	218	2000	0.004	0.176	0.105	
0.0301								
Ep	och	GPU_mem	box_loss	cls_loss	dfl_loss	Instances	Size	
6	/25	4.316	1.427	1.161			640:	10
0% 51/51	[00:		2.56it/s]		55556257			
		Class	Images	Instances	Box(P	R	mAP50	mA
P50-95):	100%		2<00:00, 2		0 665	0.165	0,178	
0.1		gii	210	2000	0.003	0.103	0.1/0	
0.1								
Ep	och	GPU_mem	box_loss	cls_loss	dfl_loss	Instances	Size	
7	/25	4.236	1.412	1.126	1.198	226	640:	10
0% 51/51	[00:	19<00:00,	2.64it/s]				0111040040	5121
				Instances	Box(P	R	mAP50	mA
P50-95):	100%	7/7 [00:0	4<00:00, 1	.491t/s]	0 621	0.214	0.2	
0.11		MII	216	2666	6.631	10.214	6.2	
0.22								
Ep	och	GPU_mem	box_loss	cls_loss	dfl_loss	Instances	Size	
8	/25	4.24G	1.379	1.082	1.17	186	640:	10
0% 51/51	[00:	19<00:00,	2.57it/s]					
men and	****	Class	Images	Instances	Box(P	R	mAP50	mA
P50-95):	100%	7/7 [00:0 all	2<00:00, 2	.481t/s]	0.721	0.201	0.210	
0.12		arr	216	2000	6.721	0.201	0.219	
0.16								
Ep	och	GPU_mem	box_loss	cls_loss	dfl_loss	Instances	Size	
	/25	4.316	1.376	1.046	1.169	323	640:	10
0% 51/51	[00:		2.58it/s]					
				Instances	Box(P	R	mAP50	mA
P50-95):	100%		4<00:00, 1		0.674	0.005	0.000	
0.12		all	218	2666	0.6/1	0.215	0.212	
V.46								
Ep	och	GPU_mem	box_loss	cls_loss	dfl_loss	Instances	Size	
10	/25	4.276	1.354	1.023	1.165	285	640:	10
0% 51/51	[00:		2.57it/s]		10000000			
man and				Instances	Box(P	R	mAP50	mΑ
P50-95):	100%	7// [00:0	2<00:00, 2	.381t/s]	0 714	0.225	0.237	
0.13		all	210	2000	0.714	0.225	0.25/	
Ep	och	GPU_mem				Instances	Size	
11	/25	4.476	1.357	1.021		292	640:	10
0% 51/51	[00:	20<00:00,	2.54it/s]				CORP. CARROLL	avatil
222 224		Class	Images	Instances	Box(P	R	mAP50	mA.
P50-95):			2<00:00, 2	2666	0.710	8.226	0.333	
0.132		WIT	216	2666	40.718	6.226	10.232	
0.236								
Ep	och	GPU_mem	box_loss	cls_loss	dfl_loss	Instances	Size	
12	/25	4.24G	1.318	0.9773	1.137		648:	10
0% 51/51	[00:	21<00:00,	2.38it/s]					
		Class	Images	Instances	Box(P	R	mAP50	mA
P50-95);	100%	7/7 [00:0 all	3<00:00, 2	.021t/s] 2666	0.703	0.228	0.234	
0.133		all	218	2666	0.703	0.228	0.234	
0.133								
Ep	och	GPU mem	box loss	cls_loss	dfl loss	Instances	Size	
	/25	4.21G			1.139	316	640:	10
0% 51/51	[00:		2.57it/s]					
A POUR CAROLICA	309/9/5	Class		Instances	Box(P	R	mAP50	mΑ
P50-95):	100%		2<00:00, 2		6 707		0.000	
		all	218	2666	0.759	0.225	0.258	

0.145

Epoch GPU_mem box_loss cls_los		Instances	Size
14/25 4.38G 1.28 0.923 0% 51/51 [00:21<00:00, 2.42it/s]	35 1.119	163	640: 10
0% 51/51 [00:21<00:00, 2.42it/s] Class Images Instance	s Box(P	R	mAP50 mA
P50-95): 100% 7/7 [00:04<00:00, 1.67it/s]			
all 218 266 0.149	6 0.777	0.226	0.261
0.149			
Epoch GPU_mem box_loss cls_los		Instances	Size
15/25 4.256 1.269 0.925	9 1.114	232	640: 10
0% 51/51 [00:19<00:00, 2.64it/s] Class Images Instance	s Box(P	R	mAP50 mA
P50-95): 100% 7/7 [00:02<00:00, 2.44it/s]			
all 218 266 0.139	66 0.725	0.23	0.24
Closing dataloader mosaic			
/usr/local/lib/python3.10/dist-packages/alb			
serWarning: Got processor for bboxes, but r	no transform	to process i	t.
<pre>selfset_keys() albumentations: Blur(p=0.01, blur_limit=(3,</pre>	7)). Mediani	Blur(p=0.01.	blur limit=
(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip			
<pre>8)) /usr/lib/python3.10/multiprocessing/popen_6</pre>			ar as fastri v
as called. os.fork() is incompatible with m			
eaded, so this will likely lead to a deadlo			
self.pid = os.fork()			
Epoch GPU mem box loss cls los	s dfl loss	Instances	Size
16/25 4.23G 1.314 0.96	3 1.123	180	640: 10
0% 51/51 [00:29<00:00, 1.75it/s] Class Images Instance	s Box(P	R	mAP50 mA
P50-95): 100% 7/7 [00:02<00:00, 2.59it/s]	is BOX(P	K	IIIAP 30 IIIA
all 218 266	6 0.696	0.264	0.232
0.133			
Epoch GPU_mem box_loss cls_los	s dfl_loss	Instances	Size
17/25 4.26G 1.289 0.859	1.112	131	640: 10
0% 51/51 [00:18<00:00, 2.72it/s] Class Images Instance	s Box(P	R	mAPS0 mA
P50-95): 100% 7/7 [00:02<00:00, 2.76it/s]	.s box(:		100 50 111
all 218 266	6 0.557	0.245	0.242
0.139			
Epoch GPU_mem box_loss cls_los	s dfl_loss	Instances	Size
18/25 4.23G 1.268 0.826	1.103	158	640: 10
0% 51/51 [00:18<00:00, 2.73it/s] Class Images Instance	s Box(P	R	mAPS0 mA
P50-95): 100% 7/7 [00:03<00:00, 2.18it/s]			
all 218 266 0.161	66 0.75	0.254	0.28
0.101			
Epoch GPU_mem box_loss cls_los			
19/25 4.24G 1.262 0.825 0% 51/51 [00:18<00:00, 2.83it/s]	1.106	172	640: 10
Class Images Instance	s Box(P	R	mAP50 mA
P50-95): 100% 7/7 [00:04<00:00, 1.74it/s]			
all 218 266 0.153	6 0.782	0.232	0.271
0.133			
Epoch GPU_mem box_loss cls_los			
20/25 4.23G 1.232 0.785 0% 51/51 [00:18<00:00, 2.81it/s]	1.088	192	640: 10
Class Images Instance	s Box(P	R	mAP50 mA
P50-95): 100% 7/7 [00:02<00:00, 2.62it/s]			
all 218 266	66 0.64	0.262	0.274

-	-	_	_
а	а	5	82


Ep	och	GPU mem	box loss	cls loss	dfl loss	Instances	Size	
21	/25	4,25G	1.214	0.7618	1.076	156	640:	10
			2.76it/s]					
	· Carri	Class		Instances	Box(P	R	mAP50	mA
050.05)	1004		2<00:00, 2		DOX		1100 50	lian.
r30-33).	100%	7/7 [00.0	218		0.508	0.266	0.273	
0.156		MII	(216)	2000	17. SITA	0.200	4.275	
0.156								
En	och	GPU mem	box loss	cls loss	dfl loss	Instances	Size	
	/25	4,236					640:	10
		7, 4 4 4	2.80it/s]	3000000	21001			
	[001			Testances	Box(P	R	mAP50	w.f.
nea act.	took	7/7 [00:0	3<00:00, 1	Instances	DOX	n.	IIIAP 30	HIPS.
,20-32):	100%	7// [00:0	218	2666	0.677	0.263	0.288	
0.000		911	218	2666	0.6//	8.265	0.288	
0.162								
Ep	och	GPU_mem	box_loss	cls loss	dfl_loss	Instances	Size	
23	/25	4.216	1.19	0.7252	1.053	161	640:	10
0% 51/51	[00:	18<00:00.	2.79it/s]					
- 55				Instances	Boy/P	R	mAP50	mA
psa-951.	100%		3<00:00, 1		pont.	550	1000 50	
. 30-331.	200.0	all	218		9.66	8,262	0.276	
0.156		all	210	2000	0.00	0,202	0.270	
0.230								
Ep	och	GPU mem	box loss	cls_loss	dfl loss	Instances	Size	
	/25		1.168	0.7198	1.051	175	640:	10
			2.89it/s]					
			Images	Instances	Box(P	R	mAP50	mA.
P50-951	199%		2<00:00, 2			225	100 50	
30 227.	200.0	all	218	2666	0.546	0.255	0.281	
0.154		dir	210	2000	0.340	0.233	0.201	
V+45+								
En	och	GPU mem	box loss	cls loss	dfl loss	Instances	Size	
	/25	4.26		0.7061		169	640:	10
A. 100 CO			2.72it/s]	0.7001	1.032	103	040.	10
04 31/31	[00	Class	7-2-2-2	Instances	Day/D	R	mAP50	
nen nel	* not		2<00:00, 2	instances	BOX(P	K:	MAPSO	BA:
P50-95):	166%	1. 1. C. C. L. S. C. L. C.			4 449	A 45	4 494	
		all	218	2666	0.647	0.25	0.278	
200								
0.157								
			0.172 hours		L-1-1-11			
25 epoch Optimize	r str	ipped from	runs/detec	t/train3/we t/train3/we				


(fused): 168	lavers.	11128293	parameters.	@ gradients.	28.5 GELOPS
Control of the contro				R	mAP50 mA
7/7 [00:12<0	0:00, 1	.78s/it]			
all	218	2666	0.677	0.263	0.286
bike	218	25	0.603	0.84	0.107
hus	218	40	8.523	0.425	0.412
car	218	2080	0.704	0.709	0.741
motor	218	10	1	9	0.0102
person	218	368	0.498	0.261	0.285
(**: 50(T-X-C)-					
rider	218	19	1	a	0.0809
truck	218	124	0.414	0.403	0.369
67857(CS)	0.00000	0.350	7777733X	W. E. W. C.	55550 1954
	Class 7/7 [00:12<0 all bike bus car motor person rider	Class Images 7/7 [00:12<00:00, 1 all 218 bike 218 hus 218 car 218 motor 218 person 218 rider 218	Class Images Instances 7/7 [00:12<00:00, 1.78s/it] all 218 2666 bike 218 25 hus 218 40 car 218 2080 motor 218 10 person 218 368 rider 218 19	Class Images Instances Box(P 7/7 [00:12<00:00, 1.78s/it] all 218 2666 0.677 bike 218 25 0.603 hus 218 40 0.523 car 218 2080 0.704 motor 218 10 1 person 218 368 0.498 rider 218 19 1	7/7 [88:12<08:88, 1.78s/it] all 218 2666 8.677 8.263 bike 218 25 8.603 0.84 bus 218 40 6.523 6.425 car 218 2080 0.704 0.709 motor 218 10 1 8 person 218 368 0.498 0.261 rider 218 19 1 0

```
0.238
         Speed: 0.3ms preprocess, 5.4ms inference, 0.0ms loss, 5.2ms postprocess per image
         Results saved to runs/detect/train3

→ Learn more at https://docs.ultralytics.com/modes/train

 In [6]:
           !ls {HOME}/runs/detect/train/
         args.yaml weights
          Training Results
          Confusion Matrix
In [10]:
           from IPython.display import Image
In [11]:
           %cd {HOME}
           Image (filename='/content/runs/detect/train3/confusion\_matrix.png', \ width= \verb"1000") \\
         /content
Out[11]:
                                             Confusion Matrix
          Results
In [13]:
           %cd {HOME}
           Image(filename=f'/content/runs/detect/train3/results.png', width=1000)
         /content
Out[13]:
                            2.25
                                              1.25
                            2.00
           1.5
                                                               0.70
                            1.75
                                                                                 0.225
                                              1.20
           1.4
                            1.50
                                                               0.65
                                              1.15
                            1.25
                                                               0.60
           1.3
                                                                                 0.175
                                              1.10
                            1.00
           1.2
                            0.75
```


Training YOLOv9

GPU access verification

```
In [1]: | Invidia-smi
    Tue Aug 6 16:09:27 2024
    +-----
    -----
                     Driver Version: 535.104.05 CUDA Version: 1
    NVIDIA-SMI 535.104.05
    2.2
    .
    GPU Name
                      Persistence-M Bus-Id
                                          Disp.A | Volatile Uncor
    r. ECC
    Fan Temp Perf Pwr:Usage/Cap | Memory-Usage GPU-Util Comp
    ute M.
    MIG M.
    ======
    0 Tesla T4
                            Off | 00000000:00:04.0 Off
    0
    N/A 42C P8
                       9W / 70W | 0MiB / 15360MiB
                                                  9% D
    efault
    1
    N/A
    Processes:
    GPU GI CI PID Type Process name
    Memory
    1
          ID ID
    No running processes found
In [2]: | import os
      HOME = os.getcwd()
      print(HOME)
    /content
     Installation of YOLOv9 ( cloning because not distributed through pip packages )
In [3]: | Igit clone https://github.com/SkalskiP/yolov9.git
      %cd yolov9
      !pip install -r requirements.txt -q
    Cloning into 'yolov9'...
    remote: Enumerating objects: 325, done.
    remote: Counting objects: 100% (218/218), done.
    remote: Compressing objects: 100% (62/62), done.
```

```
remote: Total 325 (delta 159), reused 156 (delta 156), pack-reused 107
       Receiving objects: 100% (325/325), 2.23 MiB | 13.38 MiB/s, done.
       Resolving deltas: 100% (165/165), done.
       /content/yolov9
                                                  - 207.3/207.3 kB 7.0 MB/s eta 0:00:00
                                                  62.7/62.7 kB 70.2 kB/s eta 0:00:00
In [4]: # YOLOv9 can not automatically download the weights so they are manually downlo
         !wget -P {HOME}/weights -q https://github.com/WongKinYiu/yolov9/releases/downlo
         !wget -P {HOME}/weights -q https://github.com/WongKinYiu/yolov9/releases/downlo
         !wget -P {HOME}/weights -q https://github.com/WongKinYiu/yolov9/releases/downlo
         !wget -P {HOME}/weights -q https://github.com/WongKinYiu/yolov9/releases/downlo
In [5]:
         !ls -la {HOME}/weights
       total 402444
       drwxr-xr-x 2 root root
                                   4096 Aug 6 16:10 .
       drwxr-xr-x 1 root root
                                   4096 Aug 6 16:10 ...
       -rw-r--r-- 1 root root 51508261 Feb 18 12:36 gelan-c.pt
       -rw-r--r-- 1 root root 117203713 Feb 18 12:36 gelan-e.pt
       -rw-r--r-- 1 root root 103153312 Feb 18 12:36 yolov9-c.pt
       -rw-r--r-- 1 root root 140217688 Feb 18 12:36 yolov9-e.pt
        Dataset Upload
In [6]: | %cd {HOME}/yolov9
       /content/yolov9
In [7]: | !pip install roboflow
         from roboflow import Roboflow
         rf = Roboflow(api_key="jPCXLMBZJU137MRBek9F")
         project = rf.workspace("foreignobjectaerodromes").project("o.d-in-bad-weather")
         version = project.version(1)
         dataset = version.download("yolov9")
       Collecting roboflow
        Downloading roboflow-1.1.37-py3-none-any.whl.metadata (9.4 kB)
       Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages
       (from roboflow) (2024.7.4)
       Collecting chardet==4.0.0 (from roboflow)
         Downloading chardet-4.0.0-py2.py3-none-any.whl.metadata (3.5 kB)
       Requirement already satisfied: idna==3.7 in /usr/local/lib/python3.10/dist-packag
       es (from roboflow) (3.7)
       Requirement already satisfied: cycler in /usr/local/lib/python3.10/dist-packages
       (from roboflow) (0.12.1)
       Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dis
       t-packages (from roboflow) (1.4.5)
       Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packa
       ges (from roboflow) (3.7.1)
       Requirement already satisfied: numpy>=1.18.5 in /usr/local/lib/python3.10/dist-pa
       ckages (from roboflow) (1.26.4)
       Requirement already satisfied: opencv-python-headless==4.10.0.84 in /usr/local/li
       b/python3.10/dist-packages (from roboflow) (4.10.0.84)
       Requirement already satisfied: Pillow>=7.1.2 in /usr/local/lib/python3.10/dist-pa
       ckages (from roboflow) (9.4.0)
       Requirement already satisfied: python-dateutil in /usr/local/lib/python3.10/dist-
       packages (from roboflow) (2.8.2)
       Collecting python-dotenv (from roboflow)
         Downloading python_dotenv-1.0.1-py3-none-any.whl.metadata (23 kB)
       Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-package
       s (from roboflow) (2.31.0)
```

```
Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (fr
       om roboflow) (1.16.0)
       Requirement already satisfied: urllib3>=1.26.6 in /usr/local/lib/python3.10/dist-
       packages (from roboflow) (2.0.7)
       Requirement already satisfied: tqdm>=4.41.0 in /usr/local/lib/python3.10/dist-pac
       kages (from roboflow) (4.66.4)
       Requirement already satisfied: PyYAML>=5.3.1 in /usr/local/lib/python3.10/dist-pa
       ckages (from roboflow) (6.0.1)
       Collecting requests-toolbelt (from roboflow)
        Downloading requests_toolbelt-1.0.0-py2.py3-none-any.whl.metadata (14 kB)
       Collecting filetype (from roboflow)
        Downloading filetype-1.2.0-py2.py3-none-any.whl.metadata (6.5 kB)
       Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist
       -packages (from matplotlib->roboflow) (1.2.1)
       Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dis
       t-packages (from matplotlib->roboflow) (4.53.1)
       Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-
       packages (from matplotlib->roboflow) (24.1)
       Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist
       -packages (from matplotlib->roboflow) (3.1.2)
       Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python
       3.10/dist-packages (from requests->roboflow) (3.3.2)
       Downloading roboflow-1.1.37-py3-none-any.whl (76 kB)
                                                 - 76.9/76.9 kB 4.9 MB/s eta 0:00:00
       Downloading chardet-4.0.0-py2.py3-none-any.whl (178 kB)
                                                 - 178.7/178.7 kB 12.4 MB/s eta 0:00:00
       Downloading filetype-1.2.0-py2.py3-none-any.whl (19 kB)
       Downloading python_dotenv-1.0.1-py3-none-any.whl (19 kB)
       Downloading requests_toolbelt-1.0.0-py2.py3-none-any.whl (54 kB)
                                                 - 54.5/54.5 kB 4.4 MB/s eta 0:00:00
       Installing collected packages: filetype, python-dotenv, chardet, requests-toolbel
       t, roboflow
         Attempting uninstall: chardet
           Found existing installation: chardet 5.2.0
           Uninstalling chardet-5.2.0:
             Successfully uninstalled chardet-5.2.0
       Successfully installed chardet-4.0.0 filetype-1.2.0 python-dotenv-1.0.1 requests-
       toolbelt-1.0.0 roboflow-1.1.37
       loading Roboflow workspace...
       loading Roboflow project...
       Downloading Dataset Version Zip in O.D-IN-BAD-WEATHER-1 to yolov9:: 108%
       75164/75164 [00:03<00:00, 23377.79it/s]
       Extracting Dataset Version Zip to O.D-IN-BAD-WEATHER-1 in yolov9:: 100%
       2312/2312 [00:00<00:00, 5743.00it/s]
        Training with Dataset
In [8]: %cd {HOME}/yolov9
         !pvthon train.pv \
         --batch 16 --epochs 25 --img 640 --device 0 \
         --data {dataset.location}/data.yaml \
         --weights {HOME}/weights/gelan-c.pt \
         --cfg models/detect/gelan-c.yaml \
         --hyp hyp.scratch-high.yaml
       /content/volov9
       2024-08-06 16:11:39.547702: E external/local_xla/xla/stream_executor/cuda/cuda_ff
       t.cc:485] Unable to register cuFFT factory: Attempting to register factory for pl
       ugin cuffT when one has already been registered
       2024-08-06 16:11:39.841425: E external/local_xla/xla/stream_executor/cuda/cuda_dn
       n.cc:8454] Unable to register cuDNN factory: Attempting to register factory for p
       lugin cuDNN when one has already been registered
       2024-08-06 16:11:39.926061: E external/local_xla/xla/stream_executor/cuda/cuda_bl
       as.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for
```

binktii copras mieli olie ilas ati eauk neeli i ekistei en

2024-08-06 16:11:40.233013: I tensorflow/core/platform/cpu_feature_guard.cc:210] This Tensorflow binary is optimized to use available CPU instructions in performa nce-critical operations.

To enable the following instructions: AVX2 FMA, in other operations, rebuild Tens orFlow with the appropriate compiler flags.

2024-08-06 16:11:41.461037: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:3
8] TF-TRT Warning: Could not find TensorRT

train: weights=/content/weights/gelan-c.pt, cfg=models/detect/gelan-c.yaml, data =/content/yolov9/0.D-IN-BAD-WEATHER-1/data.yaml, hyp=hyp.scratch-high.yaml, epoch s=25, batch_size=16, imgsz=640, rect=false, resume=false, nosave=false, noval=fal se, noautoanchor=false, noplots=false, evolve=None, bucket=, cache=None, image_weights=False, device=0, multi_scale=False, single_cls=false, optimizer=SGD, sync_b n=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, fixed_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, min_items=0, close_mosaic=0, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
YOLOV5 1e33dbb Python-3.10.12 torch-2.3.1+cu121 CUDA:0 (Tesla T4, 15102MiB)

hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_
epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, cls_pw=1.
0, dfl=1.5, obj_pw=1.0, iou_t=0.2, anchor_t=5.0, fl_gamma=0.0, hsv_h=0.015, hsv_s
=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.9, shear=0.0, perspective=0.
0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.15, copy_paste=0.3

ClearML: run 'pip install clearml' to automatically track, visualize and remotely train YOLO

in ClearML

TensorBoard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/

Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...

100% 755k/755k [00:00<00:00, 23.0MB/s] Overriding model.yaml nc=80 with nc=7

	rom	n	params	module	argum
ents					
0	-1	1	1856	models.common.Conv	[3, 6
4, 3, 2]					
1	-1	1	73984	models.common.Conv	[64,
128, 3, 2]					
2	-1	1	212864	models.common.RepNCSPELAN4	[128,
256, 128, 64, 1]					
3	-1	1	164352	models.common.ADown	[256,
256]					
4	-1	1	847616	models.common.RepNCSPELAN4	[256,
512, 256, 128, 1]					
5	-1	1	656384	models.common.ADown	[512,
512]					
6	-1	1	2857472	models.common.RepNCSPELAN4	[512,
512, 512, 256, 1]					
7	-1	1	656384	models.common.ADown	[512,
512]					
8	-1	1	2857472	models.common.RepNCSPELAN4	[512,
512, 512, 256, 1]					
9	-1	1	656896	models.common.SPPELAN	[512,
512, 256]	-	-	030030	mode 231 common 131 1 2 2 4 1	[522]
10	-1	1	9	torch.nn.modules.upsampling.Upsample	[Non
e, 2, 'nearest']	-	-		to the same of the	[
	6]	1	9	models.common.Concat	[1]
12	-1	î	3119616		[102
4, 512, 512, 256,	_	•	3119010	models.common.kephcsrccare	[102
13	-1	4	0	torch.nn.modules.upsampling.Upsample	[Non
	- 4	•		corem.mm.moduzes.upsampizing.upsampie	Liton
e, 2, 'nearest'] 14 [-1.	41			models.common.Concat	[1]
14 [-1, 15		1	013640		
	-1	1	912640	models.common.RepNCSPELAN4	[102
4, 256, 256, 128,					F254
16	-1	1	164357	models common Afroni	1762

```
2561
17
            [-1, 12] 1
                                0 models.common.Concat
                                                                           [1]
                          2988544 models.common.RepNCSPELAN4
                                                                           [768,
18
                  -1 1
512, 512, 256, 1]
                  -1 1
                           656384 models.common.ADown
19
                                                                           [512,
5121
                                0 models.common.Concat
20
              [-1, 9] 1
                                                                           [1]
21
                   -1 1
                          3119616 models.common.RepNCSPELAN4
                                                                           [102
4, 512, 512, 256, 1]
22
         [15, 18, 21] 1
                          5496037 models.yolo.DDetect
                                                                           [7,
[256, 512, 512]]
gelan-c summary: 621 layers, 25442469 parameters, 25442453 gradients, 103.2 GFLOP
Transferred 931/937 items from /content/weights/gelan-c.pt
AMP: checks passed <
optimizer: SGD(lr=0.01) with parameter groups 154 weight(decay=0.0), 161 weight(d
ecav=0.0005), 160 bias
INFO:albumentations.check_version:A new version of Albumentations is available:
1.4.13 (you have 1.4.12). Upgrade using: pip install -U albumentations. To disabl
e automatic update checks, set the environment variable NO_ALBUMENTATIONS_UPDATE
to 1.
albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=
(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8,
8))
/usr/lib/python3.10/multiprocessing/popen_fork.py:66: RuntimeWarning: os.fork() w
as called. os.fork() is incompatible with multithreaded code, and JAX is multithr
eaded, so this will likely lead to a deadlock.
  self.pid = os.fork()
train: Scanning /content/yolov9/O.D-IN-BAD-WEATHER-1/train/labels... 815 images,
5 backgrounds, 0 corrupt: 100% 815/815 [00:00<00:00, 1690.07it/s]
train: New cache created: /content/yolov9/O.D-IN-BAD-WEATHER-1/train/labels.cache
val: Scanning /content/yolov9/0.D-IN-BAD-WEATHER-1/valid/labels... 218 images, 2
backgrounds, 0 corrupt: 100% 218/218 [00:00<00:00, 650.85it/s]
val: New cache created: /content/yolov9/0.D-IN-BAD-WEATHER-1/valid/labels.cache
Plotting labels to runs/train/exp/labels.jpg...
Image sizes 640 train, 640 val
Using 2 dataloader workers
Logging results to runs/train/exp
Starting training for 25 epochs...
              GPU_mem box_loss cls_loss dfl_loss Instances
      Epoch
                                                                        Size
      0/24
                14.56
                           1.568
                                      2.077
                                                 1.285
                                                                         640: 10
                                                              321
0% 51/51 [00:56<00:00, 1.10s/it]
                Class
                        Images Instances
                                                                       mAP50
AP50-95: 100% 7/7 [00:07<00:00, 1.06s/it]
                  a11
                             218
                                       2666
                                                 0.719
                                                            0.229
                                                                       0.235
0.141
      Epoch
               GPU_mem
                       box_loss cls_loss
                                              dfl_loss Instances
                                                                        Size
      1/24
                14.5G
                          1.39
                                     1.229
                                                 1.175
                                                              435
                                                                         640: 10
0% 51/51 [00:41<00:00, 1.24it/s]
                Class
                          Images Instances
                                                                       mAP50
AP50-95: 100% 7/7 [00:05<00:00, 1.27it/s]
                                                   0.7
                                                            0.254
                  a11
                             218
                                                                       0.236
                                       2666
0.146
              GPU_mem box_loss
                                  cls loss
                                              dfl loss Instances
      Enoch
                                                                        Size
      2/24
                12.5G
                           1.417
                                      1.285
                                                 1.198
                                                              337
                                                                         640: 10
0% 51/51 [00:42<00:00, 1.21it/s]
                Ċlass
                                                     Þ
                                                                       mAP50 m
                          Images Instances
                                                                Ř
AP50-95: 100% 7/7 [00:05<00:00, 1.29it/s]
                  all
                             218
                                       2666
                                                 0.626
                                                            0.246
                                                                       0.236
0.139
      Epoch
               GPU mem
                       box loss cls loss
                                             dfl_loss Instances
                                                                        Size
```

13G

3/24

1.461

1.272

1,221

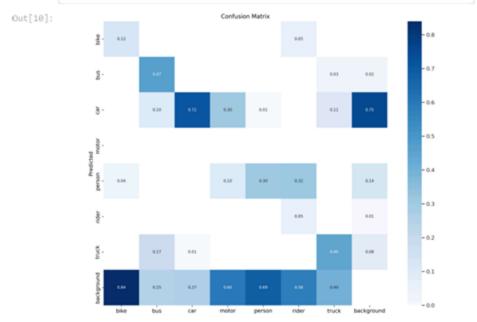
358

640: 10

0% 51/51 [00:43<00:00, 1.18it/s]			
Class Images Instances	P	R	mAP50 m
AP50-95: 100% 7/7 [00:06<00:00, 1.15it/s] all 218 2666	0.566	0.237	0.22
0.129			
Epoch GPU_mem box_loss cls_loss 4/24 13G 1,474 1.2	dfl_loss 1.215	Instances 355	Size 640: 10
4/24 136 1.474 1.2 0% 51/51 [00:42<00:00, 1.19it/s] Class Images Instances	p	R	тарка т
AP50-95: 100% 7/7 [00:06<00:00, 1.16it/s] all 218 2666			
0.103	6.676	0.204	0.213
Epoch GPU_mem box_loss cls_loss	dfl_loss	Instances	Size
5/24 136 1.454 1.136 0% 51/51 [00:41<00:00, 1.22it/s]	1.207	306	640: 10
Class Images Instances	Р	R	mAP50 m
AP50-95: 100% 7/7 [00:05<00:00, 1.17it/s] all 218 2666	0.66	0.222	0.231
0.133			
Epoch GPU_mem box_loss cls_loss	dfl_loss	Instances	Size
6/24 13G 1.452 1.11	1.205	354	640: 10
0% 51/51 [00:42<00:00, 1.21it/s] Class Images Instances	P	R	mAP50 m
AP50-95: 100% 7/7 [00:05<00:00, 1.24it/s] all 218 2666			0.222
0.128	0.393	6.233	0.232
Epoch GPU_mem box_loss cls_loss	dfl loss	Instances	Siza
7/24 13G 1.458 1.129	1.231	346	640: 10
0% 51/51 [00:42<00:00, 1.20it/s]			
Class Images Instances AP50-95: 100% 7/7 [00:05<00:00, 1.31it/s]			mAP50 m
all 218 2666 0.124	0.619	0.212	0.217
Epoch GPU_mem box_loss cls_loss	dfl_loss	Instances	Size 640: 10
8/24 13G 1.447 1.071 0% 51/51 [00:42<00:00, 1.20it/s]	1.157	310	
Class Images Instances AP50-95: 100% 7/7 [00:05<00:00, 1.30it/s]		R	пАР50 п
all 218 2666	0.751	0.209	0.231
0.132			
Epoch GPU_mem box_loss cls_loss	dfl_loss	Instances	Size
9/24 13G 1.411 1.061 0% 51/51 [00:41<00:00, 1.22it/s]	1.21	317	640: 10
Class Images Instances AP50-95: 100% 7/7 [00:05<00:00, 1.18it/s]	Р	R	mAP50 m
all 218 2666		0.235	0.245
0.137			
Epoch GPU_mem box_loss cls_loss			
10/24 13G 1.408 1.045 0% 51/51 [00:41<00:00, 1.21it/s]	1.203	355	640: 10
Class Images Instances AP50-95: 100% 7/7 [00:05<00:00, 1.18it/s]	Р	R	mAP50 m
all 218 2666	0.721	0.244	0.255
0.142			
Epoch GPU_mem box_loss cls_loss			
11/24 13G 1.394 1.019 0% 51/51 [00:41<00:00, 1.22it/s]	1.191	533	640: 10
Class Images Instances	P	Ř	mAP50 m
AP50-95: 100% 7/7 [00:05<00:00, 1.26it/s]			

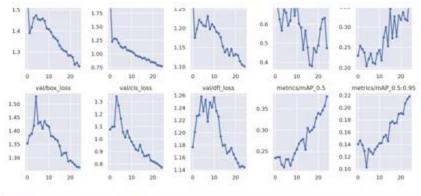
	all	218	2666	0.602	0.218	0.268	
0.142							
Epoch	GPU mem	box loss	cls loss	dfl loss	Instances	Size	
12/24	136	1.373	0.9734	1.187	234	640:	10
0% 51/51 [00:	42<00:00.						
	Class	Images	Instances	Р	R	mAP50	1
AP50-95: 100%	7/7 [00:0	5<00:00, 1	.31it/s]				
	all	218	2666	0.582	0.275	0.275	
0.152							
Epoch	GPU_mem	box_loss	cls_loss	dfl_loss	Instances 200	Size	
13/24	13G	1.365	0.9574	1.176	200	640:	1
0% 51/51 [00:	41<00:00,	1.23it/s]					
		Images		P	R	mAP50	- 1
AP50-95: 100%	7/7 [00:0	5<00:00, 1	.17it/s]				
	a11	218	2666	0.465	0.3	0.279	
0.155							
					Instances		
14/24	13G	1.354	0.9434	1.153	361	640:	1
0% 51/51 [00:							
	Class	Images	Instances	P	R	mAP50	1
AP50-95: 100%	7/7 [00:0	5<00:00, 1	.23it/s]		26.70.600		
	a11	218	2666	0.567	0.253	0.254	
0.146							
	0.2200	7.000	100				
	GPU_mem	box_loss	cls_loss	dfl_loss	Instances		
15/24	136	1.33	0.919	1.138	296	640:	10
0% 51/51 [00:	41<00:00,	1.22it/s]					
	Class	Images	Instances	Р	R	mAP50	1
AP50-95: 100%	7/7 [00:0	5<00:00, 1	.251t/s]				
	all	218	2666	0.477	0.344	0.305	
0.175							
				153 1		12.00	
Epoch	GPU_mem	DOX_1055	0.0053	d+1_1055	Instances	Size	
16/24		1.315	0.9253	1.146	265	640:	1
0% 51/51 [00:	42<00:00,	1.211t/s]	*		Ř	-1070	
AP50-95: 100%				P	К	MAP 50	- 3
AP30-93: 100%	all			0 206	0.273	0 206	
0.178	911	210	2000	0.300	0.2/3	0.290	
0.1/8							
Enoch	GDI1 most	hay lace	ele loce	dfl loss	Instances	5170	
17/24	136	1 306	0 9033	1 120	302	640:	
0% 51/51 [00:	42/00:00	1 211+/67	9.0933	21.223	302	040.	41
en si/si [ee.				D	R	MARKA	
AP50-95: 100%	7/7 [00:0	6/00:00 1	16it/s1			1100 30	
Mr 30-33, 100%	al1	218		0.379	0.326	0.3	
			2.000				
0.175							
0.175							
	GPU mem	hov loss	cls loss	dfl loss	Instances	5170	
					Instances		
Epoch 18/24	13G	1.302	0.8924		Instances 408		
Epoch 18/24	13G 42<00:00,	1.302 1.21it/s]	0.8924	1.146	408	640:	16
Epoch 18/24 0% 51/51 [00:	13G 42<00:00, Class	1.302 1.21it/s] Images	0.8924 Instances	1.146			16
Epoch 18/24 0% 51/51 [00:	13G 42<00:00, Class 7/7 [00:0	1.302 1.21it/s] Images 95<00:00, 1	0.8924 Instances .20it/s]	1.146 p	408 R	640: mAP50	16
Epoch 18/24 9% 51/51 [00: AP50-95: 100%	13G 42<00:00, Class 7/7 [00:0	1.302 1.21it/s] Images 95<00:00, 1	0.8924 Instances .20it/s]	1.146 p	408	640: mAP50	1
Epoch	13G 42<00:00, Class 7/7 [00:0	1.302 1.21it/s] Images 95<00:00, 1	0.8924 Instances .20it/s]	1.146 p	408 R	640: mAP50	1
Epoch 18/24 6% 51/51 [00: AP50-95: 100%	13G 42<00:00, Class 7/7 [00:0 all	1.302 1.21it/s] Images 05<00:00, 1 218	0.8924 Instances .20it/s] 2666	1.146 P 0.474	408 R 0.276	640: mAP50 0.307	1
Epoch 18/24 9% 51/51 [00: AP50-95: 100% 0.176	13G 42<00:00, Class 7/7 [00:0 all	1.302 1.21it/s] Images 95<00:00, 1 218 box_loss	0.8924 Instances .20it/s] 2666	1.146 p e.474 dfl_loss	408 R 0.276	640: mAP50 0.307 Size	1
Epoch 18/24 6% 51/51 [66: AP50-95: 166% 0.176 Epoch 19/24	13G 42<00:00, Class 7/7 [00:0 all GPU_mem 13G	1.302 1.21it/s] Images 95<00:00, 1 218 box_loss 1.283	0.8924 Instances .20it/s] 	1.146 p e.474 dfl_loss	408 R 0.276	640: mAP50 0.307	1
Epoch 18/24 6% 51/51 [00: AP50-95: 100% 0.176	136 42<00:00, Class 7/7 [00:0 all GPU_mem 136 42<00:00,	1.302 1.21it/s] Images 95<00:00, 1 218 box_loss 1.283 1.21it/s]	0.8924 Instances .20it/s] 2666 cls_loss 0.8528	1.146 P 0.474 dfl_loss 1.128	408 R 0.276 Instances 390	640: mAP50 0.307 Size 640:	10
Epoch 18/24 9% 51/51 [00: AP50-95: 100% 0.176 Epoch 19/24 9% 51/51 [00:	136 42<00:00, Class 7/7 [00:0 all GPU_mem 136 42<00:00, Class	1.302 1.21it/s] Images 95<00:00, 1 218 box_loss 1.283 1.21it/s] Images	0.8924 Instances .20it/s] .2666 cls_loss .8528 Instances	1.146 P 0.474 dfl_loss 1.128	408 R 0.276	640: mAP50 0.307 Size 640:	10
Epoch 18/24 6% 51/51 [66: AP50-95: 166% 0.176 Epoch 19/24	136 42<00:00, Class 7/7 [00:0 all GPU_mem 136 42<00:00, Class	1.302 1.21it/s] Images 95<00:00, 1 218 box_loss 1.283 1.21it/s] Images	0.8924 Instances .20it/s] .2666 cls_loss .8528 Instances .15it/s]	1.146 P 0.474 dfl_loss 1.128	408 R 0.276 Instances 390	640: mAP50 0.307 Size 640: mAP50	10

Epoch 20/24	13G	box_loss 1.284	cls_loss 0.8476		Instances 278	Size 640:	10
0% 51/51 [00:	Class	Images	Instances	Р	R	mAP50	п
AP50-95: 100%	7/7 [00:0 all	218	.191t/s] 2666	0.488	0.318	0.339	
0.191							
Epoch		box_loss			Instances	Size	
21/24 0% 51/51 [00:	13G 41<00:00.		0.8364	1.13	176	640:	10
	Class	Images	Instances	P	Ř	mAP50	п
AP50-95: 100%	7/7 [00:0 all	218	.191t/s] 2666	0.575	0.335	0.337	
0.19							
	_	box_loss			Instances	Size	
22/24 0% 51/51 [00:	136		0.7961	1.114	296	640:	10
0x 31/31 [00.	Class		Instances	p	R	mAP50	п
AP50-95: 100%				0.405	0.340	0.247	
0.207	all	218	2666	0.625	0.319	0.347	
Epoch	GDII mom	box_loss	ele loss	dfl loss	Instances	Size	
23/24	13G		0.7864			640:	10
0% 51/51 [00:	42<00:00, Class		Tostancos	P	R	mAP50	п
AP50-95: 100%			Instances .31it/s]	P	K	MAPSO	п
0.214	a11	218	2666	0.632	0.315	0.357	
0.214							
Epoch	GPU_mem 13G	box_loss	cls_loss 0.7746		Instances 337	Size	10
24/24 0% 51/51 [00:		1.233 1.20it/s]	0.7746	1.101	33/	640:	16
ADEO OF . 100W	Class		Instances	P	R	mAP50	п
AP50-95: 100%	7/7 [00:0 all	218	.311t/s] 2666	0.475	0.377	0.379	
0.218							
25 epochs com							
Optimizer str eights/last_s			/exp/weight	ts/last.pt,	saved as ru	ns/train/ex	p/w
Optimizer str			/exp/weight	ts/best.pt,	saved as ru	ns/train/ex	p/w
eights/best_s	triped.pt,	51.5MB					
Validating ru		xp/weights/	best.pt				
Fusing layers gelan-c summa		vers 25416	357 naramet	tors. A grad	dients 100	5 GELOPS	
_	Člass	Images	Instances				п
AP50-95: 100%	7/7 [00:1 all	3<00:00, 2 218	.00s/it] 2666	0.475	0.377	0.378	
0.218							
0.0521	bike	218	25	0.334	0.12	0.115	
	bus	218	40	0.424	0.525	0.469	
0.325	car	218	2080	0.705	0.749	0.777	
0.494							
0.131	motor	218	10	0.575	0.145	0.209	
	person	218	368	0.454	0.355	0.348	
0.149	rider	218	19	0.372	0.211	0.286	
0.0765	touck	218	124	0.461	0 522	0.445	
	truck	218	124	6.401	0.532	0.445	

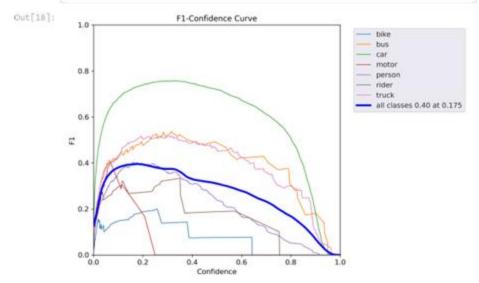

0.297

Results saved to runs/train/exp

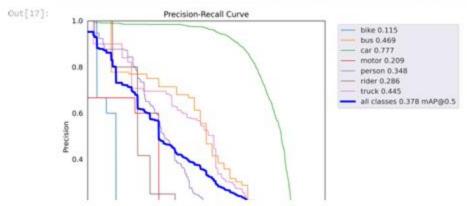
In [9]:	!ls {HOME}/yolov9/runs/train/exp/		
	confusion_matrix.png tch@ pred.jpg	PR_curve.png	val_ba
	events.out.tfevents.1722960702.5ee47e966f1a.1251.0 tch1 labels.jpg	R_curve.png	val_ba
	fi_curve.png tch1 pred.jpg	results.csv	val_ba
	tch2 labels.jpg	results.png	val_ba
	labels_correlogram.jpg	train_batch0.jpg	val_ba
	tch2_pred.jpg labels.jpg	train_batch1.jpg	weight
	s opt.yaml P_curve.png	train_batch2.jpg val_batch0_labels.jpg	

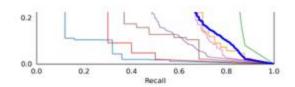

Training Results

Confusion Matrix

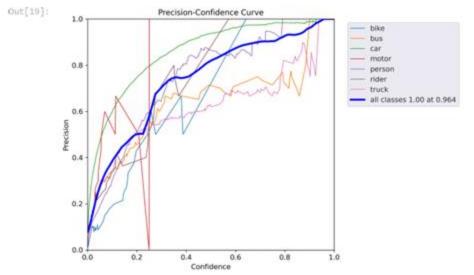


Results





In [18]: from IPython.display import Image
Image(filename=f'/content/yolov9/runs/train/exp/Fl_curve.png', width=1888)



Training YOLOv10

GPU access verification

```
In [2]: | !nvidia-smi
     Tue Aug 6 16:39:56 2024
     NVIDIA-SMI 535.104.05
                                 Driver Version: 535.104.05 CUDA Version: 1
     GPU Name
                          Persistence-M | Bus-Id Disp.A | Volatile Uncor
     r. ECC
     Fan Temp Perf Pwr:Usage/Cap
                                             Memory-Usage | GPU-Util Comp
     ute M.
     MIG M.
     Off | 00000000:00:04.0 Off
     0 Tesla T4
     0
     N/A 55C P8 10W / 70W |
                                            0MiB / 15360MiB
     efault
     N/A
      Processes:
      GPU GI CI
                      PID Type Process name
                                                                   GPU
     Memory
            ID ID
                                                                   Usag
     -----
      No running processes found
In [1]: | import os
       HOME = os.getcwd()
       print(HOME)
     /content
      Installation of YQLQv10
In [3]: | !pip install -q git+https://github.com/THU-MIG/yolov10.git
       Installing build dependencies ... done
       Getting requirements to build wheel ... done
       Preparing metadata (pyproject.toml) ... done
       Building wheel for ultralytics (pyproject.toml) ... done
In [4]: | Ipip install -q supervision roboflow
```

```
0.0/135.7 kB ? eta -:--:--
                                                   135.7/135.7 kB 4.9 MB/s eta 0:00:00
                                                   0.0/76.9 kB ? eta -:--:--
                                                   76.9/76.9 kB 6.5 MB/s eta 0:00:00
                                                   178.7/178.7 kB 15.9 MB/s eta 0:00:00
                                                  - 54.5/54.5 kB 5.0 MB/s eta 0:00:00
In [5]: !mkdir -p {HOME}/weights
         !wget -P {HOME}/weights -q https://github.com/THU-MIG/yolov10/releases/download
         !ls -lh {HOME}/weights
       total 408M
       -rw-r--r-- 1 root root 80M May 26 15:53 yolov10b.pt
       -rw-r--r-- 1 root root 100M May 26 15:53 yolov10l.pt
       -rw-r--r-- 1 root root 64M May 26 15:54 yolov10m.pt
       -rw-r--r-- 1 root root 11M May 26 15:54 yolov10n.pt
       -rw-r--r-- 1 root root 32M May 26 15:54 yolov10s.pt
       -rw-r--r-- 1 root root 123M May 26 15:54 yolov10x.pt
        Dataset Upload
In [6]:
         !mkdir {HOME}/datasets
         %cd {HOME}/datasets
         !pip install -q roboflow
         from google.colab import userdata
         from roboflow import Roboflow
         !pip install roboflow
         from roboflow import Roboflow
         rf = Roboflow(api_key="jPCXLMBZJU137MRBek9F")
         project = rf.workspace("foreignobjectaerodromes").project("o.d-in-bad-weather")
         version = project.version(1)
         dataset = version.download("yolov9")
       /content/datasets
       Requirement already satisfied: roboflow in /usr/local/lib/python3.10/dist-package
       s (1.1.37)
       Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages
       (from roboflow) (2024.7.4)
       Requirement already satisfied: chardet == 4.0.0 in /usr/local/lib/python3.10/dist-p
       ackages (from roboflow) (4.0.0)
       Requirement already satisfied: idna==3.7 in /usr/local/lib/python3.10/dist-packag
       es (from roboflow) (3.7)
       Requirement already satisfied: cycler in /usr/local/lib/python3.10/dist-packages
       (from roboflow) (0.12.1)
       Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dis
       t-packages (from roboflow) (1.4.5)
       Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packa
       ges (from roboflow) (3.7.1)
       Requirement already satisfied: numpy>=1.18.5 in /usr/local/lib/python3.10/dist-pa
       ckages (from roboflow) (1.26.4)
       Requirement already satisfied: opencv-python-headless==4.10.0.84 in /usr/local/li
       b/python3.10/dist-packages (from roboflow) (4.10.0.84)
       Requirement already satisfied: Pillow>=7.1.2 in /usr/local/lib/python3.10/dist-pa
       ckages (from roboflow) (9.4.0)
       Requirement already satisfied: python-dateutil in /usr/local/lib/python3.10/dist-
       packages (from roboflow) (2.8.2)
```

```
ckages (from roboflow) (1.0.1)
       Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-package
       s (from roboflow) (2.31.0)
       Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (fr
       om roboflow) (1.16.0)
       Requirement already satisfied: urllib3>=1.26.6 in /usr/local/lib/python3.10/dist-
       packages (from roboflow) (2.0.7)
       Requirement already satisfied: tqdm>=4.41.0 in /usr/local/lib/python3.10/dist-pac
       kages (from roboflow) (4.66.4)
       Requirement already satisfied: PyYAML>=5.3.1 in /usr/local/lib/python3.10/dist-pa
       ckages (from roboflow) (6.0.1)
       Requirement already satisfied: requests-toolbelt in /usr/local/lib/python3.10/dis
       t-packages (from roboflow) (1.0.0)
       Requirement already satisfied: filetype in /usr/local/lib/python3.10/dist-package
       s (from roboflow) (1.2.0)
       Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist
       -packages (from matplotlib->roboflow) (1.2.1)
       Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dis
       t-packages (from matplotlib->roboflow) (4.53.1)
       Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-
       packages (from matplotlib->roboflow) (24.1)
       Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist
       -packages (from matplotlib->roboflow) (3.1.2)
       Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python
       3.10/dist-packages (from requests->roboflow) (3.3.2)
       loading Roboflow workspace...
       loading Roboflow project...
       Downloading Dataset Version Zip in O.D-IN-BAD-WEATHER-1 to yolov9:: 100%
       75164/75164 [00:02<00:00, 25864.88it/s]
       Extracting Dataset Version Zip to O.D-IN-BAD-WEATHER-1 in yolov9:: 100%
       2312/2312 [00:00<00:00, 4765.98it/s]
        Training with Dataset
In [9]:
         %cd {HOME}
         Iyolo task=detect mode=train epochs=25 batch=16 imgsz=640 plots=True \
         model={HOME}/weights/yolov10n.pt \
         data=/content/datasets/O.D-IN-BAD-WEATHER-1/data.yaml
       /content
       New https://pypi.org/project/ultralytics/8.2.74 available 😩 Update with 'pip in
       stall -U ultralvtics
       Ultralytics YOLOv8.1.34 🚀 Python-3.10.12 torch-2.3.1+cu121 CUDA:0 (Tesla T4, 15
       102MiB)
       engine/trainer: task=detect, mode=train, model=/content/weights/yolov10n.pt, data
       =/content/datasets/0.D-IN-BAD-WEATHER-1/data.yaml, epochs=25, time=None, patience
       =100, batch=16, imgsz=640, save=True, save_period=-1, val_period=1, cache=False,
       device=None, workers=8, project=None, name=train3, exist_ok=False, pretrained=Tru
       e, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, re
       ct=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, pr
       ofile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dro
       pout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou
       =0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1,
       stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=
       None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=Fal
       se, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxe
       s=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=Fa
       lse, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01,
       lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum
       =0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_s
```

moothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate= 0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosa ic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fr

Requirement already satisfied: python-dotenv in /usr/local/lib/python3.10/dist-pa

action=1.0, cfg=None, tracker=potsort.yami, save_dir=runs/detect/trains
Downloading https://ultralytics.com/assets/Arial.ttf to '/root/.config/yolov10/Arial.ttf'...

100% 755k/755k [00:00<00:00, 14.7MB/s]

2024-08-06 16:47:24.676931: E external/local_xla/xla/stream_executor/cuda/cuda_ff t.cc:485] Unable to register cuFFT factory: Attempting to register factory for pl ugin cuFFT when one has already been registered

2024-08-06 16:47:24.935453: E external/local_xla/xla/stream_executor/cuda/cuda_dn n.cc:8454] Unable to register cuDNN factory: Attempting to register factory for p lugin cuDNN when one has already been registered

2024-08-06 16:47:25.013554: E external/local_xla/xla/stream_executor/cuda/cuda_bl as.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered

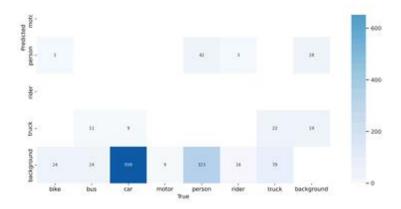
Overriding model.yaml nc=80 with nc=7

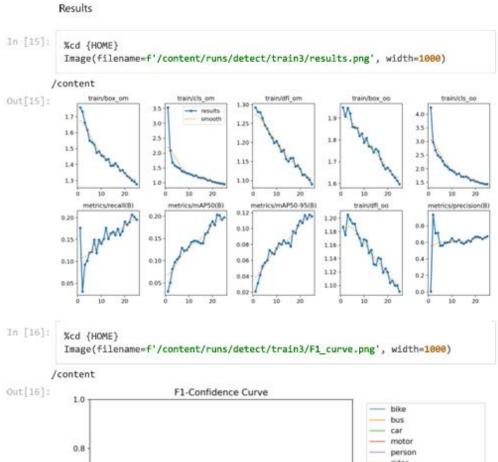
	from	n	params	module
arguments				
0 [3, 16, 3, 2]	-1	1	464	ultralytics.nn.modules.conv.Conv
1	-1	1	4672	ultralytics.nn.modules.conv.Conv
[16, 32, 3, 2]				
2	-1	1	7360	ultralytics.nn.modules.block.C2f
[32, 32, 1, True]	-1	1	18560	ultralytics.nn.modules.conv.Conv
[32, 64, 3, 2]	-1	1	10300	dicrafycics.mr.moddles.comv.comv
4	-1	2	49664	ultralytics.nn.modules.block.C2f
[64, 64, 2, True]				•
5	-1	1	9856	ultralytics.nn.modules.block.SCDown
[64, 128, 3, 2]			107533	-141-44-1 626
6 [128, 128, 2, True	-1	2	197632	ultralytics.nn.modules.block.C2f
7	-1	1	36096	ultralytics.nn.modules.block.SCDown
[128, 256, 3, 2]	_	_		
8	-1	1	460288	ultralytics.nn.modules.block.C2f
[256, 256, 1, True				
9	-1	1	164608	ultralytics.nn.modules.block.SPPF
[256, 256, 5] 10	-1	1	249728	ultralytics.nn.modules.block.PSA
[256, 256]	-1	-	249720	dicratycics.mn.moddles.block.rsa
11	-1	1	0	torch.nn.modules.upsampling.Upsample
[None, 2, 'nearest	:']			
	1, 6]	1	0	ultralytics.nn.modules.conv.Concat
[1]				-141-4/
13	-1	1	148224	ultralytics.nn.modules.block.C2f
[384, 128, 1] 14	-1	1	9	torch.nn.modules.upsampling.Upsample
[None, 2, 'nearest		-		co. c
	1, 4]	1	0	ultralytics.nn.modules.conv.Concat
[1]				
16	-1	1	37248	ultralytics.nn.modules.block.C2f
[192, 64, 1] 17	-1	1	36992	ultralytics.nn.modules.conv.Conv
[64, 64, 3, 2]	-1	1	30992	dicrafycics.mr.moddles.comv.comv
	, 13]	1	0	ultralytics.nn.modules.conv.Concat
[1]				•
19	-1	1	123648	ultralytics.nn.modules.block.C2f
[192, 128, 1]		_		
20 [120 120 2 2]	-1	1	18048	ultralytics.nn.modules.block.SCDown
[128, 128, 3, 2] 21 [-1	, 10]	1	0	ultralytics.nn.modules.conv.Concat
[1]	, 201	-		
22	-1	1	282624	ultralytics.nn.modules.block.C2fCIB
[384, 256, 1, True		-		
23 [16, 19	_	1	864058	ultralytics.nn.modules.head.v10Detect
[7, [64, 128, 256]			2700770	annual and and and a colon
YULUVION summary:	385 1a	yers,	2/09/70	parameters, 2709754 gradients, 8.4 GFLOPs

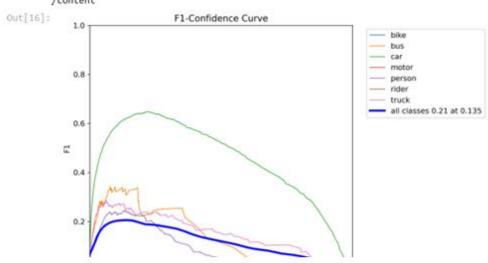
```
manaterieu 422/222 acena mon preciaaneu weagnea
TensorBoard: Start with 'tensorboard --logdir runs/detect/train3', view at htt
p://localhost:6006/
Freezing layer 'model.23.dfl.conv.weight'
AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...
Downloading https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8
n.pt to 'yolov8n.pt'...
100% 6.23M/6.23M [00:00<00:00, 72.4MB/s]
AMP: checks passed <
train: Scanning /content/datasets/O.D-IN-BAD-WEATHER-1/train/labels... 815 image
s, 5 backgrounds, 0 corrupt: 100% 815/815 [00:00<00:00, 1851.90it/s]
train: New cache created: /content/datasets/O.D-IN-BAD-WEATHER-1/train/labels.cac
he
INFO:albumentations.check_version:A new version of Albumentations is available:
1.4.13 (you have 1.4.12). Upgrade using: pip install -U albumentations. To disabl
e automatic update checks, set the environment variable NO_ALBUMENTATIONS_UPDATE
/usr/local/lib/python3.10/dist-packages/albumentations/core/composition.py:161: U
serWarning: Got processor for bboxes, but no transform to process it.
  self._set_keys()
albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=
(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8,
8))
/usr/lib/python3.10/multiprocessing/popen_fork.py:66: RuntimeWarning: os.fork() w
as called. os.fork() is incompatible with multithreaded code, and JAX is multithr
eaded, so this will likely lead to a deadlock.
  self.pid = os.fork()
val: Scanning /content/datasets/O.D-IN-BAD-WEATHER-1/valid/labels... 218 images,
2 backgrounds, 0 corrupt: 100% 218/218 [00:00<00:00, 1466.02it/s]
val: New cache created: /content/datasets/O.D-IN-BAD-WEATHER-1/valid/labels.cache
Plotting labels to runs/detect/train3/labels.jpg...
optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and d
etermining best 'optimizer', 'lr0' and 'momentum' automatically...
optimizer: AdamW(lr=0.000909, momentum=0.9) with parameter groups 95 weight(decay
=0.0), 108 weight(decay=0.0005), 107 bias(decay=0.0)
TensorBoard: model graph visualization added 

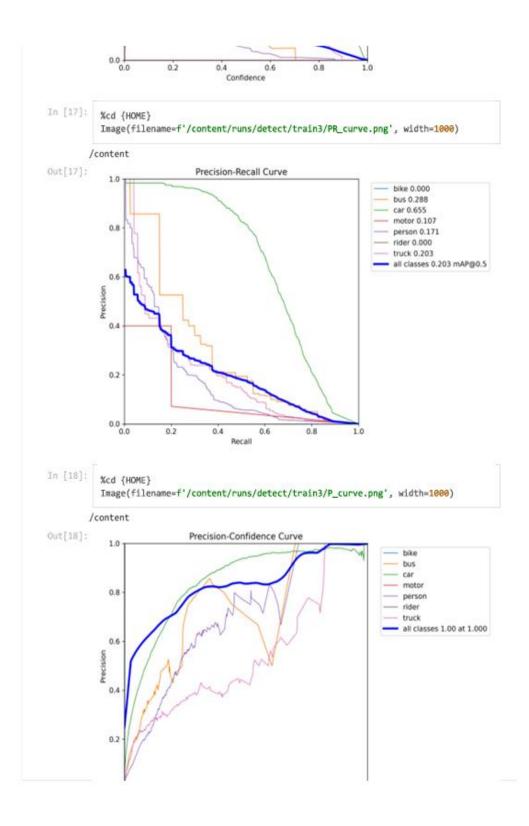
✓
Image sizes 640 train, 640 val
Using 2 dataloader workers
Logging results to runs/detect/train3
Starting training for 25 epochs...
                                                 dfl_om
      Epoch
               GPU_mem
                           box_om
                                      cls_om
                                                            box_oo
                                                                        cls_oo
dfl_oo Instances
                        Size
                            1.758
       1/25
                                       3.537
                                                  1.292
                                                              1.95
                                                                         4.249
                        640: 100% 51/51 [00:32<00:00, 1.59it/s]
1.187
             352
                 Class
                           Images Instances
                                                  Box(P
                                                                        mAP50 mA
P50-95): 100% 7/7 [00:03<00:00, 1.79it/s]
                   all
                              218
                                                0.00568
                                                             0.177
                                                                       0.0311
0.0209
                                                 dfl_om
      Epoch
               GPU_mem
                           box_om
                                      cls_om
                                                            box_oo
                                                                       cls_oo
dfl_oo Instances
                        Size
                                                             1.908
       2/25
                 3.38G
                            1.732
                                       2.098
                                                  1.281
                                                                         2.981
                        640: 100% 51/51 [00:23<00:00, 2.22it/s]
1.175
             203
                 Class
                          Images Instances
                                                  Box(P
                                                                        mAP50 mA
P50-95): 100% 7/7 [00:04<00:00, 1.46it/s]
                   all
                              218
                                        2666
                                                  0.935
                                                            0.0315
                                                                       0.0509
0.0311
      Epoch
               GPU_mem
                                                 dfl_om
                           box_om
                                      cls om
                                                            box oo
                                                                        cls oo
dfl_oo Instances
                        Size
                 3.57G
                            1.663
                                       1.679
                                                             1.947
       3/25
                                                   1.28
                                                                         2.676
1.205
                        640: 100% 51/51 [00:22<00:00, 2.25it/s]
                 Class
                          Images Instances
                                                  Box(P
                                                                        mAP50 mA
P50-95): 100% 7/7 [00:02<00:00, 2.38it/s]
                   all
                              218
                                                  0.711
                                                            0.0928
                                                                       0.0813
                                        2666
0.0417
```

Epoch GPU_mem						
dfl_oo Instances		cls_om	dfl_om	box_oo	cls_oo	
4/25 3.77G	1.619	1.579	1.264	1.922	2.491	
1.198 141	640: 100%	51/51 [00:25	<00:00, 2.	02it/s]		
Class	Images	Instances	Box(P	R	mAP50	mΑ
P50-95): 100% 7/7 [00:0 all	02<00:00, 2 218	2666	0.715	0.102	0.097	
0.0526	220	2000	01,125	0.101	0.057	
Epoch GPU_mem dfl_oo Instances	box_om	cls_om	dfl_om	box_oo	cls_oo	
5/25 3.39G	1.551	1.524	1.246	1.86	2,419	
1.192 139	640: 100%	51/51 [00:22	<00:00, 2.	28it/s]		
Class	Images	Instances	Box(P	R	mAP50	mA
P50-95): 100% 7/7 [00:0	03<00:00, 2 218	2666	9.56	9 12	0 104	
0.057	210	2000	0.50	0.12	0.104	
Epoch GPU_mem	box_om	cls_om	dfl_om	box_oo	cls_oo	
dfl_oo Instances 6/25 3.31G	51Ze 1.54	1.481	1.236	1.857	2.283	
1.191 244	640: 100%	51/51 [00:23	<00:00, 2.	17it/s]		
Class	Images	Instances	Box(P	R	mAP50	mA
P50-95): 100% 7/7 [00:0	02<00:00, 2	2666	0 565	0 122	9 11	
0.06	210	2000	0.303	0.122	0.11	
Epoch GPU_mem	box_om	cls_om	dfl_om	box_oo	cls_oo	
dfl_oo Instances 7/25 3.53G	51Ze	1 30	1 222	1 055	2 122	
1.177 229	640: 100%	51/51 [00:22	<00:00, 2.	23it/sl	2.132	
Class	Images	Instances	Box(P			mA.
P50-95): 100% 7/7 [00:0	04<00:00, 1	.50it/s]				
0.0729	218	2666	0.594	0.149	0.129	
010725						
Epoch GPU_mem		cls_om	dfl_om	box_oo	cls_oo	
dfl_oo Instances 8/25 3.37G			4 242	1 010	2 077	
					2.0//	
1.17 223	640: 100% 5	1/51 [00:21<	00:00, 2.3	4it/s]		mA
1.17 223 Class P50-95): 100% 7/7 [00:6	640: 100% 5 Images 03<00:00. 2	1/51 [00:21< Instances	00:00, 2.3 Box(P	4it/s] R	mAP50	mA
1.17 223 Class P50-95): 100% 7/7 [00:0 all	640: 100% 5 Images 03<00:00. 2	1/51 [00:21< Instances	00:00, 2.3 Box(P	4it/s] R	mAP50	mA
1.17 223 Class P50-95): 100% 7/7 [00:6	640: 100% 5 Images 03<00:00. 2	1/51 [00:21< Instances	00:00, 2.3 Box(P	4it/s] R	mAP50	mA
1.17 223 Class P50-95): 100% 7/7 [00:0 all 0.0697	640: 100% 5 Images 03<00:00, 2 218	1/51 [00:21< Instances :.27it/s] 2666	00:00, 2.3 Box(P 0.596	0.119	mAP50 0.123	mA
1.17 223 Class P50-95): 100% 7/7 [00:0 all 0.0697 Epoch GPU_mem dfl_oo Instances	640: 100% 5 Images 33<00:00, 2 218 box_om Size	1/51 [00:21< Instances :.27it/s] 2666 cls_om	00:00, 2.3 Box(P 0.596 dfl_om	0.119 box_oo	mAP50 0.123 cls_oo	mA
1.17 223 Class P50-95): 100% 7/7 [00:0 all 0.0697 Epoch GPU_mem dfl_oo Instances 9/25 3.286	640: 100% 5 Images 03<00:00, 2 218 box_om Size 1.484	1/51 [00:21< Instances :.27it/s] 2666 cls_om	00:00, 2.3 Box(P 0.596 dfl_om 1.199	0.119 box_oo	mAP50 0.123	mΑ
1.17 223 Class P50-95): 100% 7/7 [00: all 0.0697 Epoch GPU_mem dfl_oo Instances 9/25 3.28G 1.159 333	640: 100% 5 Images 03<00:00, 2 218 box_om Size 1.484 640: 100%	1/51 [00:21 Instances 1.27it/s] 2666 cls_om 1.322 51/51 [00:24	00:00, 2.3 Box(P 0.596 dfl_om 1.199 <00:00, 2.	0.119 box_oo 1.829 06it/s]	mAP50 0.123 cls_oo 1.976	
1.17 223 Class P50-95): 100% 7/7 [00:0 all 0.0697 Epoch GPU_mem dfl_oo Instances 9/25 3.28G 1.159 333 Class	640: 100% 5 Images 93<00:00, 2 218 box_om Size 1.484 640: 100% Images 93<00:00, 1	1/51 [00:21 Instances 27it/s] 2666 cls_om 1.322 51/51 [00:24 Instances	00:00, 2.3 Box(P 0.596 dfl_om 1.199 <00:00, 2. Box(P	0.119 box_oo 1.829 06it/s]	mAP50 0.123 cls_oo 1.976 mAP50	
1.17 223 Class P50-95): 100% 7/7 [00:6 all 0.0697 Epoch GPU_mem dfl_oo Instances 9/25 3.28G 1.159 333 Class P50-95): 100% 7/7 [00:6 all	640: 100% 5 Images 93<00:00, 2 218 box_om Size 1.484 640: 100% Images 93<00:00, 1	1/51 [00:21 Instances 1.27it/s] 2666 cls_om 1.322 51/51 [00:24 Instances	00:00, 2.3 Box(P 0.596 dfl_om 1.199 <00:00, 2. Box(P	0.119 box_oo 1.829 06it/s]	mAP50 0.123 cls_oo 1.976 mAP50	
1.17 223 Class P50-95): 100% 7/7 [00:0 all 0.0697 Epoch GPU_mem dfl_oo Instances 9/25 3.28G 1.159 333 Class P50-95): 100% 7/7 [00:0	640: 100% 5 Images 93<00:00, 2 218 box_om Size 1.484 640: 100% Images 93<00:00, 1	1/51 [00:21 Instances 27it/s] 2666 cls_om 1.322 51/51 [00:24 Instances	00:00, 2.3 Box(P 0.596 dfl_om 1.199 <00:00, 2. Box(P	0.119 box_oo 1.829 06it/s]	mAP50 0.123 cls_oo 1.976 mAP50	
Class P50-95): 100% 7/7 [00:6 all 0.0697 Epoch GPU_mem dfl_oo Instances 9/25 3.286 1.159 333 Class P50-95): 100% 7/7 [00:6 all 0.068	640: 100% 5 Images 93<00:00, 2 218 box_om Size 1.484 640: 100% Images 93<00:00, 1	1/51 [00:21 Instances 2666 cls_om 1.322 51/51 [00:24 Instances 2666	00:00, 2.3 Box(P 0.596 dfl_om 1.199 <00:00, 2. Box(P 0.607	0.119 box_oo 1.829 06it/s] R	mAP50 0.123 cls_oo 1.976 mAP50 0.124	
1.17 223 Class P50-95): 100% 7/7 [00:6 all 0.0697 Epoch GPU_mem dfl_oo Instances 9/25 3.286 1.159 333 Class P50-95): 100% 7/7 [00:6 all 0.068 Epoch GPU_mem dfl_oo Instances	640: 100% 5	1/51 [00:21 Instances 2666 cls_om 1.322 51/51 [00:24 Instances 2666 cls_om cls_om cls_om cls_om	00:00, 2.3 Box(P 0.596 dfl_om 1.199 <00:00, 2. Box(P 0.607	0.119 box_oo 1.829 06it/s] R 0.149	mAP50 0.123 cls_oo 1.976 mAP50 0.124 cls_oo	
Class P50-95): 100% 7/7 [00: all 0.0697 Epoch GPU_mem dfl_oo Instances 9/25 3.28G 1.159 333 Class P50-95): 100% 7/7 [00: all 0.068 Epoch GPU_mem dfl_oo Instances 10/25 3.37G	640: 100% 5	1/51 [00:21 Instances .27it/s] 2666 cls_om 1.322 51/51 [00:24 Instances .92it/s] 2666 cls_om 1.302	00:00, 2.3 Box(P 0.596 dfl_om 1.199 <00:00, 2. Box(P 0.607 dfl_om 1.204	0.119 box_oo 1.829 06it/s] R 0.149 box_oo	mAP50 0.123 cls_oo 1.976 mAP50 0.124 cls_oo	
Class P50-95): 100% 7/7 [00: all 0.0697 Epoch GPU_mem dfl_oo Instances 9/25 3.28G 1.159 333 Class P50-95): 100% 7/7 [00: all 0.068 Epoch GPU_mem dfl_oo Instances 10/25 3.37G	640: 100% 5	1/51 [00:21 Instances .27it/s] 2666 cls_om 1.322 51/51 [00:24 Instances .92it/s] 2666 cls_om 1.302 51/51 [00:22	00:00, 2.3 Box(P 0.596 dfl_om 1.199 <00:00, 2. Box(P 0.607 dfl_om 1.204 <00:00, 2.	0.119 box_oo 1.829 06it/s] R 0.149 box_oo 1.788 29it/s]	mAP50 0.123 cls_oo 1.976 mAP50 0.124 cls_oo 1.931	mΑ
Class P50-95): 100% 7/7 [00: all 0.0697 Epoch GPU_mem dfl_oo Instances 9/25 3.28G 1.159 333 Class P50-95): 100% 7/7 [00: all 0.068 Epoch GPU_mem dfl_oo Instances 10/25 3.37G 1.169 256 Class	640: 100% 5	1/51 [00:21 Instances .27it/s] 2666 cls_om 1.322 51/51 [00:24 Instances .92it/s] 2666 cls_om 1.302 51/51 [00:22 Instances	00:00, 2.3 Box(P 0.596 dfl_om 1.199 <00:00, 2. Box(P 0.607 dfl_om 1.204 <00:00, 2.	0.119 box_oo 1.829 06it/s] R 0.149 box_oo	mAP50 0.123 cls_oo 1.976 mAP50 0.124 cls_oo 1.931	mΑ
Class P50-95): 100% 7/7 [00: all 0.0697 Epoch GPU_mem dfl_oo Instances 9/25 3.28G 1.159 333 Class P50-95): 100% 7/7 [00: all 0.068 Epoch GPU_mem dfl_oo Instances 10/25 3.37G	640: 100% 5	1/51 [00:21 Instances .27it/s] 2666 cls_om 1.322 51/51 [00:24 Instances .92it/s] 2666 cls_om 1.302 51/51 [00:22 Instances	00:00, 2.3 Box(P 0.596 dfl_om 1.199 <00:00, 2. Box(P 0.607 dfl_om 1.204 <00:00, 2. Box(P	0.119 box_oo 1.829 06it/s] R 0.149 box_oo 1.788 29it/s] R	mAP50 0.123 cls_oo 1.976 mAP50 0.124 cls_oo 1.931 mAP50	mΑ
Class P50-95): 100% 7/7 [00: all 0.0697 Epoch GPU_mem dfl_oo Instances 9/25 3.28G 1.159 333 Class P50-95): 100% 7/7 [00: all 0.068 Epoch GPU_mem dfl_oo Instances 10/25 3.37G 1.169 256 Class P50-95): 100% 7/7 [00:6	640: 100% 5	1/51 [00:21 Instances 27it/s] 2666 cls_om 1.322 51/51 [00:24 Instances .92it/s] 2666 cls_om 1.302 51/51 [00:22 Instances .92it/s] 2666 cls_om 1.302 51/51 [00:22 Instances .52it/s]	00:00, 2.3 Box(P 0.596 dfl_om 1.199 <00:00, 2. Box(P 0.607 dfl_om 1.204 <00:00, 2. Box(P	0.119 box_oo 1.829 06it/s] R 0.149 box_oo 1.788 29it/s] R	mAP50 0.123 cls_oo 1.976 mAP50 0.124 cls_oo 1.931 mAP50	mΑ
Class P50-95): 100% 7/7 [00: all 0.0697 Epoch GPU_mem dfl_oo Instances 9/25 3.28G 1.159 333 Class P50-95): 100% 7/7 [00: all 0.068 Epoch GPU_mem dfl_oo Instances 10/25 3.37G 1.169 256 Class P50-95): 100% 7/7 [00: all 0.075	640: 100% 5	1/51 [00:21 Instances 2666 cls_om 1.322 51/51 [00:24 Instances .92it/s] 2666 cls_om 1.302 51/51 [00:22 Instances .52it/s] 2666	00:00, 2.3 Box(P 0.596 dfl_om 1.199 <00:00, 2. Box(P 0.607 dfl_om 1.204 <00:00, 2. Box(P 0.647	box_oo 1.829 0.149 box_oo 1.788 29it/s] R 0.14	mAP50 0.123 cls_oo 1.976 mAP50 0.124 cls_oo 1.931 mAP50 0.131	mΑ
Class P50-95): 100% 7/7 [00:6 all 0.0697 Epoch GPU_mem dfl_oo Instances 9/25 3.28G 1.159 333 Class P50-95): 100% 7/7 [00:6 all 0.068 Epoch GPU_mem dfl_oo Instances 10/25 3.37G 1.169 256 Class P50-95): 100% 7/7 [00:6 all 0.075 Epoch GPU_mem	640: 100% 5	1/51 [00:21 Instances 2666 cls_om 1.322 51/51 [00:24 Instances .92it/s] 2666 cls_om 1.302 51/51 [00:22 Instances .52it/s] 2666	00:00, 2.3 Box(P 0.596 dfl_om 1.199 <00:00, 2. Box(P 0.607 dfl_om 1.204 <00:00, 2. Box(P 0.647	box_oo 1.829 0.149 box_oo 1.788 29it/s] R 0.14	mAP50 0.123 cls_oo 1.976 mAP50 0.124 cls_oo 1.931 mAP50 0.131	mΑ
Class P50-95): 100% 7/7 [00:6 all 0.0697 Epoch GPU_mem dfl_oo Instances 9/25 3.28G 1.159 333 Class P50-95): 100% 7/7 [00:6 all 0.068 Epoch GPU_mem dfl_oo Instances 10/25 3.37G 1.169 256 Class P50-95): 100% 7/7 [00:6 all 0.075 Epoch GPU_mem dfl_oo Instances 10/25 3.37G	640: 100% 5	1/51 [00:21 Instances 2666 cls_om 1.322 51/51 [00:24 Instances .92it/s] 2666 cls_om 1.302 51/51 [00:22 Instances 51/51 [00:25 Instances cls_om 1.302 51/51 [00:25 Instances .52it/s] 2666 cls_om	00:00, 2.3 Box(P 0.596 dfl_om 1.199 <00:00, 2. Box(P 0.607 dfl_om 1.204 <00:00, 2. Box(P 0.647 dfl_om 1.192	box_oo 1.829 96it/s] R 0.149 box_oo 1.788 29it/s] R 0.14 box_oo 1.809	mAP50 0.123 cls_oo 1.976 mAP50 0.124 cls_oo 1.931 mAP50 0.131 cls_oo	mΑ


Class Images Instances Box(P P50-95): 100% 7/7 [00:02<00:00, 2.63it/s]	R	mAP50					
P30-93): 100% /// [60:02<60:00, 2:031C/S]	K	IIIAP 30	mΑ				
all 218 2666 0.613	0.15	0.141					
0.0814							
Epoch GPU_mem box_om cls_om dfl_om dfl_oo Instances Size	box_oo	cls_oo					
12/25 3.7G 1.43 1.232 1.176	1.771	1.795					
1.148 202 640: 100% 51/51 [00:21<00:00, 2.35 Class Images Instances Box(P	it/s] R	mAP50	mΑ				
P50-95): 100% 7/7 [00:03<00:00, 2.27it/s] all 218 2666 0.611	0.177	0.145					
0.0799	0.1//	0.143					
Epoch GPU_mem box_om cls_om dfl_om dfl_oo Instances Size	box_oo	cls_oo					
13/25 3.296 1.434 1.242 1.18	1.767	1.822					
1.153 142 640: 100% 51/51 [00:22<00:00, 2.24 Class Images Instances Box(P	it/s]	mAP50	mΑ				
P50-95): 100% 7/7 [00:02<00:00, 2.45it/s]	N	IIIAF 30	III.				
all 218 2666 0.631	0.151	0.144					
0.085							
	box_oo	cls_oo					
dfl_oo Instances Size 14/25 3.42G 1.392 1.177 1.156	1.743	1.717					
1.132 207 640: 100% 51/51 [00:21<00:00, 2.33							
Class Images Instances Box(P	R	mAP50	mA.				
P50-95): 100% 7/7 [00:04<00:00, 1.75it/s] all 218 2666 0.597	0.164	0.142					
0.0816	01204	0.142					
Epoch GPU_mem box_om cls_om dfl_om dfl_oo Instances Size	box_oo	cls_oo					
15/25 3.54G 1.394 1.168 1.15 1.13 167 640: 100% 51/51 [00:22<00:00, 2.25i	1.759	1.702					
Class Images Instances Box(P	R	mAP50	mΑ				
P50-95): 100% 7/7 [00:02<00:00, 2.55it/s] all 218 2666 0.585	0.168	0.139					
0.0821	01200	01200					
Closing dataloader mosaic							
/usr/local/lib/python3.10/dist-packages/albumentations/core/composition.py:161: U							
continuing: Cot processor for bhouse, but no transform to n	nacare it		: U				
<pre>serWarning: Got processor for bboxes, but no transform to p self. set keys()</pre>	rocess it		: U				
<pre>selfset_keys() albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur</pre>	(p=0.01,	blur_limit					
<pre>selfset_keys() albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur (3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0),</pre>	(p=0.01,	blur_limit					
<pre>selfset_keys() albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur (3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), 8))</pre>	(p=0.01, tile_gri	blur_limit d_size=(8,					
<pre>selfset_keys() albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur (3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0),</pre>	(p=0.01, tile_gri	blur_limit d_size=(8, : os.fork(=) w				
<pre>selfset_keys() albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur (3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), 8)) /usr/lib/python3.10/multiprocessing/popen_fork.py:66: Runti as called. os.fork() is incompatible with multithreaded cod eaded, so this will likely lead to a deadlock.</pre>	(p=0.01, tile_gri	blur_limit d_size=(8, : os.fork(=) w				
<pre>selfset_keys() albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur (3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), 8)) /usr/lib/python3.10/multiprocessing/popen_fork.py:66: Runti as called. os.fork() is incompatible with multithreaded cod</pre>	(p=0.01, tile_gri	blur_limit d_size=(8, : os.fork(=) w				
<pre>selfset_keys() albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur (3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), 8)) /usr/lib/python3.10/multiprocessing/popen_fork.py:66: Runti as called. os.fork() is incompatible with multithreaded cod eaded, so this will likely lead to a deadlock. self.pid = os.fork() Epoch GPU_mem box_om cls_om dfl_om</pre>	(p=0.01, tile_gri	blur_limit d_size=(8, : os.fork(=) w				
<pre>selfset_keys() albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur (3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), 8)) /usr/lib/python3.10/multiprocessing/popen_fork.py:66: Runti as called. os.fork() is incompatible with multithreaded cod eaded, so this will likely lead to a deadlock. self.pid = os.fork()</pre>	(p=0.01, tile_gri meWarning e, and JA	blur_limit d_size=(8, : os.fork(X is multi	=) w				
selfset_keys() albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), 8)) /usr/lib/python3.10/multiprocessing/popen_fork.py:66: Runti as called. os.fork() is incompatible with multithreaded code eaded, so this will likely lead to a deadlock. self.pid = os.fork() Epoch GPU_mem box_om cls_om dfl_om dfl_oo Instances Size 16/25 3.56G 1.409 1.16 1.159 1.141 178 640: 100% 51/51 [00:27<00:00, 1.85]	(p=0.01, tile_gri meWarning e, and JA box_oo	blur_limit d_size=(8, cos.fork(X is multi cls_oo	=) w				
selfset_keys() albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur (3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), 8)) /usr/lib/python3.10/multiprocessing/popen_fork.py:66: Runti as called. os.fork() is incompatible with multithreaded cod eaded, so this will likely lead to a deadlock. self.pid = os.fork() Epoch GPU_mem box_om cls_om dfl_om dfl_oo Instances Size 16/25 3.56G 1.409 1.16 1.159	(p=0.01, tile_gri meWarning e, and JA box_oo 1.748 it/s]	blur_limit d_size=(8, : os.fork(X is multi cls_oo	=) w thr				
selfset_keys() albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur (3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), 8)) /usr/lib/python3.10/multiprocessing/popen_fork.py:66: Runti as called. os.fork() is incompatible with multithreaded code eaded, so this will likely lead to a deadlock. self.pid = os.fork() Epoch GPU_mem box_om cls_om dfl_om dfl_oo Instances Size 16/25 3.56G 1.409 1.16 1.159 1.141 178 640: 100% 51/51 [00:27<00:00, 1.85] Class Images Instances Box(P P50-95): 100% 7/7 [00:02<00:00, 2.34it/s] all 218 2666 0.601	(p=0.01, tile_gri meWarning e, and JA box_oo 1.748 it/s]	blur_limit d_size=(8, cos.fork(X is multi cls_oo	=) w thr				
selfset_keys() albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), 8)) /usr/lib/python3.10/multiprocessing/popen_fork.py:66: Runti as called. os.fork() is incompatible with multithreaded code eaded, so this will likely lead to a deadlock. self.pid = os.fork() Epoch GPU_mem box_om cls_om dfl_om dfl_oo Instances Size 16/25 3.56G 1.409 1.16 1.159 1.141 178 640: 100% 51/51 [00:27<00:00, 1.85] Class Images Instances Box(PP50-95): 100% 7/7 [00:02<00:00, 2.34it/s]	(p=0.01, tile_gri meWarning e, and JA box_oo 1.748 it/s] R	blur_limit d_size=(8, cos.fork(X is multi cls_oo 1.709 mAP50	=) w thr				
selfset_keys() albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), 8)) /usr/lib/python3.10/multiprocessing/popen_fork.py:66: Runti as called. os.fork() is incompatible with multithreaded code eaded, so this will likely lead to a deadlock. self.pid = os.fork() Epoch GPU_mem box_om cls_om dfl_om dfl_oo Instances Size 16/25 3.56G 1.409 1.16 1.159 1.141 178 640: 100% 51/51 [00:27<00:00, 1.85 Class Images Instances Box(PP50-95): 100% 7/7 [00:02<00:00, 2.34it/s] all 218 2666 0.601 0.0774 Epoch GPU_mem box_om cls_om dfl_om dfl_om dfl_om cls_om cls_om dfl_om cls_om cls_om dfl_om cls_om cls_om dfl_om cls_om cls_om cls_om dfl_om cls_om cl	(p=0.01, tile_gri meWarning e, and JA box_oo 1.748 it/s] R	blur_limit d_size=(8, cos.fork(X is multi cls_oo 1.709 mAP50	=) w thr				
selfset_keys() albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur (3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), 8)) /usr/lib/python3.10/multiprocessing/popen_fork.py:66: Runti as called. os.fork() is incompatible with multithreaded cod eaded, so this will likely lead to a deadlock. self.pid = os.fork() Epoch GPU_mem box_om cls_om dfl_om dfl_oo Instances Size 16/25 3.56G 1.409 1.16 1.159 1.141 178 640: 100% 51/51 [00:27<00:00, 1.85	(p=0.01, tile_gridering tile_gridering) meWarning to the property of the prope	blur_limit d_size=(8, cos.fork(X is multi cls_oo 1.709 mAP50 0.14	=) w thr				
selfset_keys() albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), 8)) /usr/lib/python3.10/multiprocessing/popen_fork.py:66: Runti as called. os.fork() is incompatible with multithreaded code eaded, so this will likely lead to a deadlock. self.pid = os.fork() Epoch GPU_mem box_om cls_om dfl_om dfl_oo Instances Size 16/25 3.56G 1.409 1.16 1.159 1.141 178 640: 100% 51/51 [00:27<00:00, 1.85] Class Images Instances Box(P P50-95): 100% 7/7 [00:02<00:00, 2.34it/s] all 218 2666 0.601 0.0774 Epoch GPU_mem box_om cls_om dfl_om dfl_oo Instances Size 17/25 3.14G 1.389 1.13 1.159 1.14 134 640: 100% 51/51 [00:20<00:00, 2.52i	(p=0.01, tile_gri meWarning e, and JA: box_oo 1.748 it/s] R 0.16 box_oo 1.711 t/s]	blur_limit d_size=(8, cos.fork(X is multi cls_oo 1.709 mAP50 0.14 cls_oo 1.664) w thr				
selfset_keys() albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), 8)) /usr/lib/python3.10/multiprocessing/popen_fork.py:66: Runti as called. os.fork() is incompatible with multithreaded code eaded, so this will likely lead to a deadlock. self.pid = os.fork() Epoch GPU_mem box_om cls_om dfl_om dfl_oo Instances Size 16/25 3.56G 1.409 1.16 1.159 1.141 178 640: 100% 51/51 [00:27<00:00, 1.85] Class Images Instances Box(P P50-95): 100% 7/7 [00:02<00:00, 2.34it/s] all 218 2666 0.601 0.0774 Epoch GPU_mem box_om cls_om dfl_om dfl_oo Instances Size 17/25 3.14G 1.389 1.13 1.159	(p=0.01, tile_gri meWarning e, and JA: box_oo 1.748 it/s] R 0.16 box_oo	blur_limit d_size=(8, cos.fork(X is multi cls_oo 1.709 mAP50 0.14 cls_oo	=) w thr				


0.0968	all	218	2666	0.624	0.174	0.161	
dfl oo Instan	ces	Size		dfl_om			
18/25 1.119 1	3.15G 54	1.362 640: 100% 5	1.082 51/51 [00:2	1.137 1<00:00, 2	1.684 .37it/s]	1.583	
P50-95): 100%	Class	Images	Instances	Box(P	R	mAP50	mΑ
0.0942	all	218	2666	0.61	0.16	0.164	
dfl oo Instan	ces	Size		dfl_om			
19/25 1.125 1	76	640: 100% 5	51/51 [00:1	9<00:00, 2	.55it/s]		
P50-95): 100%	Class 7/7 [00:02	Images <00:00. 2.	Instances .56it/sl	Box(P	R	mAP50	mΑ
0.104	all	218	2666	0.645	0.169	0.18	
dfl oo Instan	ces	Size		dfl_om			
20/25	3.16G	1.346	1.035	1.13	1.672	1.537	
P50-95): 100%	Class	Images	Instances	Box(P	R	mAP50	mA.
0.11				0.668	0.191	0.188	
	GDII mom	hov on	cle om	dfl_om	hav as	c1c oo	
dfl_oo Instan	ces	Size					
1.104 1	67	640: 100% 5	51/51 [00:2	1.114 0<00:00, 2	.44it/s]		
P50-95): 100%	7/7 [00:02	1mages 2<00:00, 2	.58it/sl	BOX(P	К	MAP50	mΑ
0.107	all	218	2666	0.668	0.184	0.18	
Epoch	GPU_mem	box_om	cls_om	dfl_om	box_oo	cls_oo	
dfl_oo Instan 22/25	2 166	1 310	1	1.115	1.641	1.483	
1.107 1	42 Class	640: 100% 5 Images	51/51 [00:2 Instances	0<00:00, 2 Box(P	.48it/s] R	mAP50	mΑ
P50-95): 100%	7/7 [00:02	<00:00, 2.	.35it/s]	0.659			
0.117	dii	210	2000	0.039	0.19	0.203	
Epoch dfl_oo Instan	GPU_mem	box_om Size	cls_om	dfl_om	box_oo	cls_oo	
23/25 1.1 166	3.17G			1.108 00:00, 2.3		1.468	
	Class	Images	Instances	Box(P	R	mAP50	mΑ
P50-95): 100%	7/7 [00:03 all	218		0.642	0.207	0.202	
0.112							
dfl_oo Instan	ces	Size	_	dfl_om	_	_	
24/25 1.1 170	3.09G 64			1.102 00:00, 2.4		1.433	
P50-95): 100%	Class	Images	Instances		R	mAP50	mA.
	all			0.659	0.202	0.193	
0.118 Epoch	GPU_mem	box om	cls om	dfl_om	box oo	cls oo	
	_	_	_	_	_	_	


```
dfl_oo Instances
                                Size
                                   1.277
                                              0.9493
                                                           1.09
                                                                      1.597
                                                                                 1.437
              25/25
                          3.1G
                                640: 100% 51/51 [00:20<00:00, 2.48it/s]
        1.091
                                                                                 mAP50 mA
                         Class
                                   Images Instances
                                                           Box(P
        P50-95): 100% 7/7 [00:04<00:00, 1.64it/s]
                           all
                                      218
                                                 2666
                                                           0.672
                                                                      0.196
                                                                                 0.197
        0.116
        25 epochs completed in 0.194 hours.
        Optimizer stripped from runs/detect/train3/weights/last.pt, 5.8MB
        Optimizer stripped from runs/detect/train3/weights/best.pt, 5.8MB
        Validating runs/detect/train3/weights/best.pt...
        Ultralytics YOLOv8.1.34 


✓ Python-3.10.12 torch-2.3.1+cu121 CUDA:0 (Tesla T4, 15
        102MiB)
        YOLOv10n summary (fused): 285 layers, 2697146 parameters, 0 gradients, 8.2 GFLOPs
                         Class
                                   Images Instances
                                                           Box(P
                                                                         R
                                                                                 mAP50 mA
        P50-95): 100% 7/7 [00:09<00:00, 1.31s/it]
                           all
                                      218
                                                           0.658
                                                                      0.192
                                                                                 0.203
        0.117
                          bike
                                       218
                                                   25
                                                               1
                                                           0.418
                                                                      0.275
                                                                                 0.288
                           bus
                                      218
                                                   40
        0.201
                                       218
                                                 2080
                           car
                                                           0.603
                                                                      0.631
                                                                                 0.655
        0.395
                                       218
                                                   10
                                                                                 0.107
                         motor
        0.0249
                                                           0.301
                                                                      0.198
                        person
                                       218
                                                  368
                                                                                 0.171
        0.0692
                         rider
                                       218
                                                   19
        0
                                      218
                                                           0.288
                                                                      0.242
                                                                                 0.203
                         truck
                                                  124
        0.128
        Speed: 0.2ms preprocess, 5.6ms inference, 0.0ms loss, 0.0ms postprocess per image
        Results saved to runs/detect/train3

♀ Learn more at https://docs.ultralytics.com/modes/train
In [10]: | !ls {HOME}/runs/detect/train/
        args.yaml weights
         Training Results
In [12]:
          from IPython.display import Image
         Confusion Matrix
In [14]:
          %cd {HOME}
          Image(filename=f'/content/runs/detect/train3/confusion_matrix.png', width=1000)
        /content
                                         Confusion Matrix
Out[14]:
                 ğ.
                 8-
                 à-
```