
Investigating the efficiency of AES and RSA Encryption algorithms in terms
of the memory used and time taken to encrypt/decrypt alphanumeric

data.

Research question: How is AES symmetric encryption algorithm more efficient in regards

to the speed and memory used compared to the RSA asymmetric algorithm when

encrypting /decrypting alphanumeric data?

Subject: Computer Science

Word count: 3855

CS EE World
https://cseeworld.wixsite.com/home
May 2020
24/34
B
Submitter Info: Anonymous

https://cseeworld.wixsite.com/home

 1

Table of Contents

Introduction ... 2

Block ciphers and Stream ciphers ... 4

Research Question.. 4

AES Encryption Algorithm .. 5

The structure of the AES Encryption algorithm .. 6

RSA Encryption Algorithm .. 14

Experiment ... 17

Methodology .. 17

Hypothesis .. 19

Results .. 19

Analysis .. 24

Evaluation .. 26

Limitations ... 27

Conclusion .. 28

Bibliography ... 29

Appendix .. 33

 2

Introduction

Over the past decade the Internet has become a major aspect of human connection. Major tasks

done by MNCs, governments and individuals are done on the internet. However, this may leave

the people exposed to hackers who may gain access to confidential information that

companies/governments may not want to show others. This is where encryption comes in.

Encryption is the process of converting messages, data or information into an unreadable format

by anyone except the intended recipient. This is called encrypted data and can be decrypted only

using a secret key (decryption key) and the recipient has the key which can decipher the

encrypted data1. The encrypted data is normally referred to as ciphertext and decrypted data is

referred to as plaintext2.

There are mainly two types of encryption algorithms:

1. Symmetric algorithms: Algorithms where only one key is used to encrypt and decrypt the

electronic information. The sender must share the key with the recipient so that the

recipient can decrypt the data. Once the key is used by the recipient, the algorithm

reverses the action done to encrypt the data and the message becomes readable again.

1 Jackob, Melis. “History of Encryption.” Web. 28 Aug. 2019
<https://www.sans.org/reading-room/whitepapers/vpns/history-encryption-730>

2 Lord, Nate. “What Is Data Encryption? Definition, Best Practices & More.” Data Insider, Digital Guardian, 15 July
2019, Web. 27 Aug. 2019
<https://digitalguardian.com/blog/what-data-encryption>

 3

The code used by the sender can either be a string of letters and numbers or numbers

generated by a random number generator3. Some examples are AES, Blowfish, DES.

2. Asymmetric algorithms: These algorithms use two keys to encrypt a plain text. The secret

keys are exchanged on the internet or over a Large Area Network. This is known as the

public key. The other key isn’t available on the internet and is only with the sender and

the receiver in order to boost security4. This is known as the private key. Either of the keys

can be used to encrypt the message. The other one is then used to decrypt the message.

These keys aren’t identical, hence the name asymmetric. Many protocols like SSL,

OpenPGP, SSL/TLS rely on asymmetric encryption algorithms for encryption of data and

digital signature functions5. Because of the two keys, these algorithms are generally

considered to be more secure than the symmetric encryption algorithms. Some examples

are RSA (Rivest–Shamir– Adleman), DSA (Digital Signature Algorithm) and ECC (Elliptic

curve cryptography).

3 Smirnoff, Peter, and Dawn M Turner. “Symmetric Key Encryption - Why, Where and How It's Used in
Banking.” Cryptomathic, Cryptomathic, 18 Jan. 2019, Web. 27 Aug. 2019
<https://www.cryptomathic.com/news-events/blog/symmetric-key-encryption-why-where-and-how-its-used-in-
banking>

4 Publishers. “Symmetric vs. Asymmetric Encryption – What Are Differences?” Global SSL Provider, SSL2BUY, 7 Feb.
2019, Web. 27 Aug. 2019
<https://www.ssl2buy.com/wiki/symmetric-vs-asymmetric-encryption-what-are-differences>

5 Rouse, Margaret. “What Is Asymmetric Cryptography? - Definition from WhatIs.com.” SearchSecurity,
TechTarget, July 2019, Web 27 Aug. 2019
<https://searchsecurity.techtarget.com/definition/asymmetric-cryptography>

 4

Block ciphers and Stream ciphers

A cipher is the algorithm that performs encryption6. The two types of ciphers are:

1. Block ciphers: This method divides the data into blocks which is then encrypted to

produce blocks of ciphertext. AES and RSA are examples of block ciphers.

2. Stream ciphers: This method takes in a stream of data and operates on it bit by bit. It

consists of two components: a cryptographic key and an algorithm. Examples are RC4,

RC2 and RC5.

 This method is not used much nowadays because it’s alternative, block cipher acts on

 blocks of data instead of bits.

Research Question

How is AES symmetric encryption algorithm more efficient in regards to the speed and memory

used compared to the RSA asymmetric algorithm when encrypting /decrypting alphanumeric

data?

6 “What Is a Cipher? - Definition from Techopedia.” Techopedia.com, Techopedia,
Web. 28 Aug. 2019
<https://www.techopedia.com/definition/6472/cipher>

 5

AES Encryption Algorithm

AES encryption algorithm is a symmetric block cipher chosen by the US government7 and is used

in software and hardware devices throughout the world to encrypt sensitive data8. The National

Institute of Standards and Technology(NIST) started the development for the AES algorithm in

1997 when its predecessor, DES started becoming vulnerable to brute force attacks. A brute force

attack is a cryptographic hack which relies on guessing the password till the correct password is

found9.

The AES being a block cipher is capable of 128 bit blocks with a key size of either 128, 192 or 256

bits(192 and 256 used only for heavy duty encryption purposes). This is the only publicly available

software which is approved by the National Security Agency to protect government information

at the highest levels of security clearance and can only be vulnerable to very large brute force

attacks.

7 DeMuro, Jonas. “What Is AES?” TechRadar, TechRadar Pro, 29 Oct. 2018, Web. 3 Sept. 2019
<https://www.techradar.com/in/news/what-is-aes>

8 Rouse, Margaret. “What Is Advanced Encryption Standard (AES)? - Definition from WhatIs.com.” SearchSecurity,
Mar. 2017, Web. 1 Dec. 2019
<https://searchsecurity.techtarget.com/definition/asymmetric-cryptography>

9 “What Is a Brute Force Attack?” Forcepoint, Forcepoint, 30 Oct. 2019, Web. 1 Dec. 2019
<https://www.forcepoint.com/cyber-edu/brute-force-attack>

 6

The structure of the AES Encryption algorithm

Parameters for working(for 128

bits plaintext)

-Block size: 128 bits plaintext(4

words/16 bytes)

-Number of rounds: 10 rounds

-Key size:128 bits

-Number of subkeys: 44

-Single subkey size: 32 bits

-Subkeys used in each round: 4

-Subkeys used in pre-round

calculation: 4

-Resultant ciphertext: 128 bits

AES encryption follows the structure shown on the left. When the size of the key is 128 bits, the

number of rounds is 10. Similarly, when the key size is 192 bits, the number of rounds is 12 and

14 when the key size is 256. These are found using the following formula:

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑜𝑢𝑛𝑑𝑠 =
𝑘𝑒𝑦	𝑠𝑖𝑧𝑒
32 + 6

Before the encryption process begins, the input array is XORed with the first four words of the

key schedule. The same happens during the decryption process, except the ciphertext state array

is XORed with the last four words of the Rjindael’s key schedule.

Figure 1: AES Encryption and Decryption process

 7

The AES algorithm breaks data into 4 x 4 tables which are referred to as state arrays. In a cipher

with a 128-bit key, a two dimensional array with 4 rows and 4 columns is formed where each

input in the array is one byte. Therefore, there are 16 bytes in total. This can be represented by

the diagram:

There are four steps to each round in AES encryption:

1. Substitute bytes

2. Shift rows

3. Mix columns

4. Add round key

For decryption, each round consists of the following four steps:

1. Inverse add round key

2. Inverse mix columns

3. Inverse shift rows

4. Inverse byte substitution

 8

The input value is stored in a two dimensional array,

a 4x4 table which looks like the table shown on the

left:

Each value has a size of 8 bits, therefore,

16 × 8 = 128	𝑏𝑖𝑡𝑠

Which is the size of the plaintext input.

The output array is exactly the same.

In both encryption and decryption, during the add round key step, the output of the previous

step (three for encryption, two for decryption) is XORed with four words from the key schedule.

The last round for both encryption and decryption does not involve the Mix columns step.

 9

The four steps in each round of processing:

1. Substitute bytes10: In this step, byte-by-byte substitution occurs using a rule that is the

same for all encryption rounds. For the decryption process, the rule will change, but it will

remain the same for all the ten rounds (provided that the key size is 128 bits).

There are two ways of performing the byte substitution process. They are:

- The modern way: Java uses this way of finding a substitute byte. In this step, a given

byte is substituted by a different byte using a pre-computed 256-element array.

- The traditional way: In this step, a 16x16 lookup table is used in order to find the

substitute bytes.

The goal of this step is to reduce the correlation between the input and the output bits at the

byte level and it is done in such a way such that it cannot be described by a mathematical

function.

2. Shift Rows: The following circular transformations in the state array take place in this step

during encryption:

- First row does not shift at all

- The second row shifts by one byte to the left

- The third row shifts by two bytes to the left

- The last row shifts by three bytes to the left

10 Kak, A. “Lecture 8: AES: The Advanced Encryption Standard Lecture Notes on ‘Computer and Network
Security.’” Engineering, Purdue University, 31 Jan. 2019, Web. 1 Dec. 2019
<https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture8.pdf>

 10

These steps can be represented by the following diagram:

For decryption, the steps take place in opposite order. The first row remains unchanged, the

second row is shifted to the right by one byte, the third row by two bytes to the right and the last

row by three bytes to the right, all shifts being circular. This can be shown by the following

diagram:

3. Mix Columns: This step replaces each byte of a column by a function of all the bytes in the

same column.

Each byte in a column is replaced by two times that byte, plus three times the next byte, plus the

byte that comes next, plus the byte that follows.

The operations in each column can be shown by the following diagram:

 11

4. Add Round Key: This is the most important stage in the encryption algorithm as it provides

uniqueness to the encryption. Due to this stage, it becomes a complex operation to

decrypt. The values of the array after this stage depend on the subkey (same size as the

state array) is computed using Rjindael’s Key Schedule. Once a subkey is generated, the

following steps are applied to the state array which results in the sum of the state and

subkey being obtained:

- Rotate: This step is to rotate the bytes that form the word 1 byte to the left. This step

is similar to the second step of the Shift Rows step.

- Rcon: Name of a sub-operation applied to the state array after the rotate step.

- Key expansion: This step expands the main key to the required number of keys.

However, due to the complexity of this process, it won’t be explained in this paper.

Figure 2: Key Expansion process where 4 words/128 bits are expanded to 44 words

 12

To better understand the process, we can take the help of an example11:

- Let’s say that the string we want to encrypt is “Thats my Kung Fu”.

- To perform the steps of encryption, first, we have to convert the text into ASCII

characters:

:

𝑇 𝑠 𝑔
ℎ 𝐾
𝑎 𝑚 𝑢 𝐹
𝑡 𝑦 𝑛 𝑢

:->:

54 73 20 67
68 20 4𝐵 20
61 6𝐷 75 46
74 79 6𝐸 75

:

- Let’s say that our key for the round is ‘Two One Nine Two’. This translated to

hexadecimal becomes:

:
𝑇 𝑂 𝑁
𝑤 𝑛 𝑖 𝑇
𝑜 𝑒 𝑛 𝑤

𝑒 𝑜

: → :

54 4𝐹 4𝐸 20
77 6𝐸 69 54
6𝐹 65 6𝐸 77
20 20 65 6𝐹

:

- Now, the state array is XORed with the round keys, for example 69 Å 4B becomes 22:

- After the XOR process, the new matrix becomes:

:

00 3𝐶 6𝐸 47
1𝐹 4𝐸 22 74
0𝐸 08 1𝐵 31
54 59 0𝐵 1𝐴

:

- After performing the substitute bytes step using the traditional method, the matrix

becomes:

11 “AES Example - Input (128 Bit Key and Message).” AES Example. Kavaliro, Web. 2 January 2020
< https://kavaliro.com/wp-content/uploads/2014/03/AES.pdf>

 13

:

63 𝐸𝐵 9𝐹 𝐴0
𝐶0 2𝐹 93 92
𝐴𝐵 30 𝐴𝐹 𝐶7
20 𝐶𝐵 2𝐵 𝐴2

:

- Performing the shift rows step:

:

63 𝐸𝐵 9𝐹 𝐴0
2𝐹 93 92 𝐶0
𝐴𝐹 𝐶7 𝐴𝐵 30
𝐴2 20 𝐶𝐵 2𝐵

:

- Performing the mix columns step:

:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

: :

63 𝐸𝐵 9𝐹 𝐴0
2𝐹 93 92 𝐶0
𝐴𝐹 𝐶7 𝐴𝐵 30
𝐴2 20 𝐶𝐵 2𝐵

: → :

𝐵𝐴 84 𝐸8 1𝐵
75 𝐴4 8𝐷 40
𝐹4 8𝐷 06 7𝐷
7𝐴 32 0𝐸 5𝐷

:

- The array after the add round key step and the first round of encryption becomes:

:

58 15 59 𝐶𝐷
47 𝐵6 𝐷4 39
08 1𝐶 𝐸2 𝐷𝐹
8𝐵 𝐵𝐴 𝐸8 𝐶𝐸

:

The steps shown above happen ten times, after which the final encrypted array is obtained.

 14

RSA Encryption Algorithm

The RSA Algorithm is the most famous asymmetric encryption algorithm12. The name RSA comes

from its founders: Ron Rivest, Ali Shamir and Leonard Adelman. It is a public key algorithm and is

considered to be the standard for encrypting data over the internet. Being an asymmetric

algorithm, it has all the advantages and disadvantages that come with asymmetric algorithms.

The working of the RSA algorithm is as follows:

Being an asymmetric algorithm, the algorithm has a public key and a private key. They are

calculated using the following steps:

1. Consider two large prime numbers: p and q. They have to be large in order to make the

ciphertext secure and not be vulnerable to brute force attacks.

2. Calculate 𝑛 = 𝑝 ∗ 𝑞

3. Calculate Euler’s totient function for n. Euler's totient function, is defined as the number

of positive integers less than or equal to n that are coprime to (i.e., do not contain any

factor in common with) n, where 1 is counted as being coprime to all numbers. Since a

number less than or equal to and coprime to a given number is called a totative, the

totient function f(n) can be simply defined as the number of totatives of n13. For example,

f(1) =1. Some of the values that the function returns for the first few numbers are:

12 “The Mathematical Algorithms of Asymmetric Cryptography and an Introduction to Public Key
Infrastructure.” Infosec Resources, 7 Feb. 2017, Web. 9 Sept. 2019
< https://resources.infosecinstitute.com/mathematical-algorithms-asymmetric-cryptography-introduction-public-
key-infrastructure/#gref >
13 Weisstein, Eric W. “Totient Function.” From Wolfram MathWorld, Wolframalpha, Web. 1 Dec. 2019
<http://mathworld.wolfram.com/TotientFunction.html>

 15

n φ(n) numbers coprime
to n

1 1 1

2 1 1

3 2 1, 2

4 2 1,3

5 4 1,2,3,4

6 2 1,5

7 6 1,2,3,4,5,6

8 4 1,3,5,7

9 6 1,2,4,5,7,8

10 4 1,3,7,9

4. Assume e to be the encryption key. It is calculated by using a number x such that the

highest common factor of x and f(n) is 1.

5. Assuming d to be the decryption key. It is calculated such that (𝑑 ∗ 𝑒)	𝑚𝑜𝑑	𝜙(𝑛) = 1.	

6. Now, the public key and private key can be formed:

Public key: {e, n}

Private key: {d, n}

The encryption process: The condition before starting the encryption process is that M<n

where M is the plaintext. Then, the ciphertext is formed using the formula:

 16

𝐶 = 𝑀V	𝑚𝑜𝑑	𝑛 where C is the ciphertext.

Here, it must be understood that M can only take numeric values. In order to take worded

messages like, “hello world”, each alphabet’s ASCII values are taken. This can be represented like:

The plaintext would be 48 65 6C 6F 20 57 6F 72 6C 64 (hexadecimal). Some junk values are added

to the start and the end which makes it harder for hackers to decrypt the data. This process is

called padding due to which the plaintext would look something like not at all like the plaintext

which is then used as the plaintext and the formula can be applied to form the ciphertext.

The decryption process: The plaintext can be calculated using the formula:

𝑀 = 𝐶W	𝑚𝑜𝑑	𝑛 where M is the plaintext.

Let’s perform a simple RSA Encryption process using small numbers for understanding

purpose. However, in proper encryption processes, the numbers have to be large in order

to have good security.

1. Let p=3 and q=5

2. 𝑛 = 𝑝 ∗ 𝑞 = 3 ∗ 5 = 15

3. 𝜙(𝑛) = (3 − 1)(5 − 1) = 2 ∗ 4 = 8

4. e is a number such that e and 𝜙(𝑛)’s HCF is 1. Therefore, assuming e to be 3, the HCF of

4 and 8 is 1, therefore the value of e is 3.

5. Calculating d:

(𝑑 ∗ 𝑒)	𝑚𝑜𝑑	𝜙(𝑛) = 1.

														(𝑑 ∗ 3)	𝑚𝑜𝑑	8 = 1

 17

 If d is assumed to be 3, then the equation is true. Hence, the value of d is 3.

6. Now, the public key is {3,15} and the private key is also {3,15}.

7. Encryption: The condition that M<n has to be satisfied. Therefore, M has to be less than

15. Let’s assume the plaintext to be 10.

𝐶 = 𝑀V	𝑚𝑜𝑑	𝑛 = 10Y	𝑚𝑜𝑑	15 = 1000	𝑚𝑜𝑑	15 = 10. Hence, the value of e is 10. Since,

this the prime numbers taken are small, the value is the same but if we take large prime

numbers and perform the padding process, the value will change.

8. Decryption:

 𝑀 = 𝐶W	𝑚𝑜𝑑	𝑛 = 10Y𝑚𝑜𝑑	10 = 10.	Therefore, the same plaintext is obtained.

Experiment

Comparing the efficiency of AES and RSA encryption algorithms with respect to speed and

memory used.

Methodology

Primary experimentation will provide a majority of the data used in this extended essay.

To compare the speed of the two algorithms, Java programs have been written14 where there

is a time function (found in .util package) which will allow me to get the time taken to encrypt

a given string in nanoseconds. For executing the Java programs, NetBeans IDE, version 8.2

will be used to run the values and get the time taken to encrypt and decrypt the values. To

get the time taken by each program, I will use the nanoTime() function provided by Java.

14 Refer to appendix for code

 18

To compare the memory used by the two algorithms, the program used to compare the

speed will be used. To get the memory used by the encryption and decryption process, the

totalMemory() and freeMemory() function will be used (found in .util package) and subtract

the two values before and after the functions to encrypt and decrypt the values are called.

This will provide an estimated value as the value will count in the function calling and other

processes as well, but will provide an estimate for the comparison of the two algorithms.

Due to the presence of various background processes on the computer, a fixed value for the time

taken or the memory used won’t be possible and hence, the average of five trials will be taken.

As the research question states, this extended essay will compare the two parameters using

alphanumeric data. Therefore, the experiment will be conducted 3 times: first being only

using alphabets, second only using numbers and third using both in a mixed string. The three

strings are as follows:

1. Alphabets: “buy me a cake”

2. Numbers: “1902319181”

3. Alphanumeric: “430 Wood Street, 47906, Jakarta”

 19

Hypothesis

My hypothesis is that AES will be faster that RSA to encrypt and decrypt the values and

wouldn’t use as much memory and thus is good enough to protect it from hackers, but

wouldn’t be good enough against large scale brute-force attacks.

Results

1. String with only alphabets (“buy me a cake”):

Time taken:

 AES (in nanoseconds) RSA (in nanoseconds)

Trial 1 336 235

Trial 2 201 295

Trial 3 320 296

Trial 4 115 322

Trial 5 256 547

Data calculation:

Calculating the mean value of AES timings: YYZ[\]^[Y\][^^_[_Z
_

= 245.6	𝑛𝑎𝑛𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠

Calculating the mean value of RSA timings: \Y_[\a_[\aZ[Y\\[_bc
_

= 339	𝑛𝑎𝑛𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠

 20

Memory used:

 AES (in KB) RSA (in KB)

Trial 1

13.355
27.49188

Trial 2 13.357792 31.90023

Trial 3 13.412088 28.93351

Trial 4 13.397936 29.760448

Trial 5 13.364272 30.438008

Data Calculation:

Calculating the mean value of the memory used by AES:

^Y.Y_cca\[^Y.b^\]dd[^Y.YacaYZ[^Y.Y__[^Y.YZb\c\
_

= 13.3774176	𝐾𝐵

Calculating the mean value of the memory used by RSA:

\c.ba^dd[Y^.a]]\Y[\d.aYY_^[\a.cZ]bbd[Y].bYd]]d
_

= 29.7048152	𝐾𝐵

2. String with only numerical values (“1902319181”):

Time taken:

 AES (in nanoseconds) RSA (in nanoseconds)

Trial 1 163 292

Trial 2 189 265

Trial 3 122 339

 21

Trial 4 217 316

Trial 5 195 277

Data calculation:

Calculating the mean values of the AES timings: ^ZY[^da[^\\[\^c[^a_
_

= 177.2	𝑛𝑎𝑛𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠

Calculating the mean values of the RSA timings:\a\[\Z_[YYa[Y^Z[Y^Z[\cc
_

297.8	𝑛𝑎𝑛𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠

Memory used:

 AES (in KB) RSA (in KB)

Trial 1 13.411856 29.095424

Trial 2 13.389632 30.102696

Trial 3 13.328792 31.096128

Trial 4 13.35568 32.75972

Trial 5 13.355784 28.431168

 22

Data Calculation:

Calculating the mean value of the memory used by AES:

^Y.b^^d_Z[^Y.YdaZY\[^Y.Y\dca\[^Y.Y__Zd[^Y.Y__cdb
_

= 13.3683488	𝐾𝐵

Calculating the mean value of the memory used by RSA:

\a.]a_b\b[Y].^]\ZaZ[Y^.]aZ^\d[Y\.c_ac\[\d.bY^^Zd
_

= 30.3170819	𝐾𝐵

3. String with alphanumeric values (“430 Wood Street, 47906, Jakarta”)

Time taken:

 AES (in nanoseconds) RSA (in nanoseconds)

Trial 1 238 480

Trial 2 166 233

Trial 3 155 360

Trial 4 132 280

Trial 5 145 345

Data calculation:

Calculating the mean values of the AES timings: \Yd[^ZZ[^__[^Y\[^b_
_

= 167.2	𝑛𝑎𝑛𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠

Calculating the mean values of the RSA timings: bd][\YY[YZ][\d][Yb_
_

= 339.6	𝑛𝑎𝑛𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠

 23

Memory used:

 AES (in KB) RSA (in KB)

Trial 1 13.355584 32.102376

Trial 2 13.355616 28.423992

Trial 3 13.36424 29.430352

Trial 4 13.345008 30.432024

Trial 5 13.3555752 31.5653344

Data calculation:

Calculating the mean value of the memory used by AES:

^Y.Y___db[^Y.Y__Z^Z[^Y.YZb\b[^Y.Yb_]]d[^Y.Y___c_\
_

= 13.3552046	𝐾𝐵

Calculating the mean value of the memory used by AES:

Y\.^]\YcZ[\d.b\Yaa\[\a.bY]Y_\[Y].bY\]\b[Y^._Z_YYbb
_

= 30.3908168	𝐾𝐵

 24

Analysis

 Time taken:

 AES (in nanoseconds) RSA (in nanoseconds)

Alphabets 245.6 339

Numbers 177.2 297.8

Alphanumeric 167.2 339.8

Graph 1: Timings for AES and RSA

As it can be seen from the graph, the AES algorithm is consistently faster than the RSA algorithm

for all three types of data, being around 172 nanoseconds faster for alphanumeric data, around

94 nanoseconds faster for alphabetical data and approx. 121 milliseconds faster for numerical

data. Keeping in mind that only a small string for all the types of data was used while comparing

the two algorithms, the difference between the two algorithms would be more pronounced

0

50

100

150

200

250

300

350

400

Alphabets Numbers Alphanumeric

TIME TAKEN BY AES AND RSA FOR ALL THREE DATA TYPES

AES (in nanoseconds) RSA (in nanoseconds)

 25

when comparing the two algorithms using large datasets which would be the situation in real life

scenarios. The hypothesis therefore holds true, with AES being faster than RSA by quite a

significant amount.

Memory used:

 AES (in KB) RSA (in KB)

Alphabets 13.3774176 29.7048152

Numbers 13.3683488 30.3170819

Alphanumeric 13.3552046 30.3908168

Graph 2: Memory used by AES and RSA

As it can be seen from graph 2, AES takes up less than half the memory used by RSA with it using

13 KB compared to the 30 KB used by RSA. Again, keeping in mind that only a small string was

0

5

10

15

20

25

30

35

Alphabets Numbers Alphanumeric

MEMORY USED BY AES AND RSA FOR ALL 3 DATA TYPES

AES (in KB) RSA (in KB)

 26

used for all the different types of data while comparing the algorithms, the difference would be

more pronounced in real life scenarios. Therefore, the hypothesis holds true here as well, with

AES being more efficient than RSA by quite a margin.

Evaluation

The programs15 were appropriate methods of evaluating:

1. The memory used by the two algorithms to encrypt and decrypt the three different types

of data. The higher the memory usage, the more the memory required to perform the

task, hence the requirements of a system will be higher, increasing the costs. Therefore,

AES is more advisable in real life scenarios due to its lesser memory usage.

2. The time taken by each algorithm to encrypt and decrypt the different types of data. A

lesser encryption/decryption time results in the system being faster and more responsive.

data. The programs provided the time taken in nanoseconds quite accurately and as

hypothesized, AES was quicker than RSA because of various factors such as the number

of operations required to be done by each algorithm, the size of the key used and the

type of operations. Therefore, RSA requires a more powerful system in order to

encrypt/decrypt large files with sizes in gigabytes or larger than AES. Hence, AES is more

advisable in real life scenarios due to its lower time and hence, lesser system

requirements.

Overall, the AES algorithm is more efficient in most real-life scenarios. However, data which

absolutely cannot be risked should not be encrypted using the AES algorithm because it is more

15 Refer to appendix for code

 27

vulnerable to large brute force attacks. In this scenario, asymmetric algorithms like RSA are more

useful and do a much better job at encrypting the data.

Limitations

There were some limitations in the experiment that need to be taken a note of:

1. As the number of processes the CPU has cannot be fixed, the values for each result varies.

However, to keep this error to a minimum, whenever a new reading had to be taken, the

computer was restarted and when booted up, only NetBeans was opened so that the

number of processes were kept to a minimum. Moreover, an average of 5 readings were

taken so as to provide the most accurate readings possible.

2. Small strings of all types of data were used which wouldn’t represent real life scenarios

where huge files with sizes over a gigabyte are encrypted. This couldn’t be done due to

the unavailability of a computer that could perform the task in a reasonable amount of

time.

 28

Conclusion

In this paper, the difference between AES Symmetric Encryption Algorithm and RSA Asymmetric

Encryption Algorithm’s efficiency in terms of time taken to encrypt and decrypt and memory

used during the encryption/decryption process was analysed. Both the algorithms’ working was

also provided.

After code experimenting and collecting the results, it was found that the hypothesis was proved

to be correct as AES was faster than RSA and was more efficient in terms of the memory used.

This trend was followed for all three data types, namely numeric, alphabetical and alphanumeric

data. There were some limitations in the experimental procedure, the most important one being

the randomness in the experiment due to the different number of processes the CPU had.

However, precautions were taken in order to keep them to a minimum.

It was found out in the evaluation that AES is better than RSA for most use scenarios except

during the transfer of highly sensitive data, where RSA was preferred. Hence, the research

question, “How is AES symmetric encryption algorithm more efficient in regards to the speed

and memory used compared to the RSA asymmetric algorithm when encrypting /decrypting

alphanumeric data?” was answered both qualitatively, through the analysis and evaluation and

quantitatively, through the results of the experiment.

 29

Bibliography

Benvenuto, Christoforus Juan. “Galois Field in Cryptography.” Galois Field in Cryptography,

University of Washington, 31 May 2012, Web. 1 Dec. 2019

<https://sites.math.washington.edu/~morrow/336_12/papers/juan.pdf>

Boneh, Dan. “The RSA Cryptosystem.” Stanford University, n.d. Web. 1 Dec. 2019

< http://crypto.stanford.edu/~dabo/courses/cs255_winter03/rsa-lecture.pdf>

“Euler's Totient Function and Euler's Theorem.” Chapter 5: Elementary Number Theory. Imperial

College London, n.d. Web. 1 Dec. 2019.

<https://www.doc.ic.ac.uk/~mrh/330tutor/ch05s02.html>

 “RSA Cryptosystem.” Princeton University, The Trustees of Princeton University, Web. 1 Dec.

2019 <https://introcs.cs.princeton.edu/java/99crypto/RSA.java.html >

Dhiraj. “RSA Encryption and Decryption in Java.” Devglan, Devglan, 10 Mar. 2018, Web. 12 Jun.

2019 <https://www.devglan.com/java8/rsa-encryption-decryption-java>

“The Mathematical Algorithms of Asymmetric Cryptography and an Introduction to Public Key

Infrastructure.” Infosec Resources, 7 Feb. 2017, Web. 9th September 2019

<https://resources.infosecinstitute.com/mathematical-algorithms-asymmetric-cryptography-

introduction-public-key-infrastructure/#gref>

“What Is a Brute Force Attack?” Forcepoint, Forcepoint, 30 Oct. 2019, Web. 1 Dec. 2019

<https://pdfs.semanticscholar.org/1bbe/ac3a18d5d1877868f67abfe4dc240d819389.pdf?_ga=2

.226994590.2004659540.1582963925-808173691.1582875584>

DeMuro, Jonas. “What Is AES?” TechRadar, TechRadar Pro, 29 Oct. 2018, Web. 3 Sept. 2019

 30

Jackob, Melis. “History of Encryption.” Web. 28 Aug. 2019

<https://www.techradar.com/in/news/what-is-aes>

Jeeva, AL, V. Palanisamy, and K. Kanagaram. “[PDF] COMPARATIVE ANALYSIS OF

PERFORMANCE EFFICIENCY AND SECURITY MEASURES OF SOME ENCRYPTION ALGORITHMS:

Semantic Scholar.” Semantic Scholar. International Journal of Engineering Research and

Applications (IJERA), May 2012. Web. 1 Dec. 2019.

<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.1532&rep=rep1&type=pdf>

Kumar, Yogesh, Rajiv Mundal, and Harsh Sharma. “Comparison of Symmetric and Asymmetric

Cryptography with Existing Vulnerabilities and Countermeasures.” Semantic Scholar. IJCSMS

International Journal of Computer Science and Management Studies, Oct. 2011. Web. 1 Dec.

2019

<https://pdfs.semanticscholar.org/d139/89613117ab2cfcf25bb0bfbb94dc71360bad.pdf?_ga=2.

261030158.2004659540.1582963925-808173691.1582875584>

Lord, Nate. “What Is Data Encryption? Definition, Best Practices & More.” Data Insider, Digital

Guardian, 15 July 2019, Web. 27 Aug. 2019

<https://digitalguardian.com/blog/what-data-encryption>

Mehrotra Seth, Shashi. “Comparative Analysis Of Encryption Algorithms For Data

Communication.” International Journal for Computer Science and Technology , IJCST, June 2011,

Web. 1 Dec. 2019

<http://www.ijcst.com/vol22/2/shashi.pdf>

 31

Patil, Priyadarshini D, et al. “A Comprehensive Evaluation of Cryptographic Algorithms: DES,

3DES, AES, RSA and Blowfish.” International Conference on Information Security and Privacy, 11-

12th December 2015, Nagpur, India, ScienceDirect.com, 2016. Web. 1 Dec 2019

 <https://www.sciencedirect.com/science/article/pii/S1877050916001101#!>

Publishers. “Symmetric vs. Asymmetric Encryption – What Are Differences?” Global SSL

Provider, SSL2BUY, 7 Feb. 2019, Web. 27 Aug. 2019

<https://www.ssl2buy.com/wiki/symmetric-vs-asymmetric-encryption-what-are-differences>

Ray, Dhiraj. “AES Encryption and Decryption in Java(CBC Mode): Java Code Geeks - 2019.” Java

Code Geeks, Java Code Geeks, 12 Mar. 2018, Web. 12 Jun. 2019

<https://www.javacodegeeks.com/2018/03/aes-encryption-and-decryption-in-javacbc-

mode.html>

Rouse, Margaret, et al. “What Is Advanced Encryption Standard (AES)? - Definition from

WhatIs.com.” SearchSecurity, Mar. 2017, Web. 1 Dec. 2019

<https://searchsecurity.techtarget.com/definition/Advanced-Encryption-Standard>

Smirnoff, Peter, and Dawn M Turner. “Symmetric Key Encryption - Why, Where and How It's

Used in Banking.” Cryptomathic, Cryptomathic, 18 Jan. 2019, Web. 27 Aug. 2019

What Is a Cipher? - Definition from Techopedia.” Techopedia.com, Techopedia, Web. 28 Aug.

2019

<https://www.cryptomathic.com/news-events/blog/symmetric-key-encryption-why-where-

and-how-its-used-in-banking>

Kanthety, Sundeep Saradhi. “NETWORK SECURITY - RSA ALGORITHM.” YouTube. YouTube, 18

Jan. 2018. Web. 3 Sept. 2019.

<https://www.youtube.com/watch?v=2Z3toEiY5lI&t=1243s>

 32

Kanthety, Sundeep Saradhi. “NETWORK SECURITY- AES (ADVANCED ENCRYPTION STANDARD)

Algorithm.” YouTube. YouTube, 11 Jan. 2018. Web. 3 Sept. 2019.

<https://www.youtube.com/watch?v=vZ7YQ67Cbtc&t=1508s>

 33

Appendix

The following code was used for my experiments (heavily adapted from the sources cited below).

I used it to run the programs for AES and RSA and get the time taken and memory used.

Program for AES Encryption Algorithm16:

1. Alphabetical data

import java.io.UnsupportedEncodingException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.*;

import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;

public class AES {

 private static SecretKeySpec secretKey;
 private static byte[] key;

 public static void setKey(String myKey)
 {
 MessageDigest sha = null;
 try {
 key = myKey.getBytes("UTF-8");
 sha = MessageDigest.getInstance("SHA-1");
 key = sha.digest(key);
 key = Arrays.copyOf(key, 16);
 secretKey = new SecretKeySpec(key, "AES");
 }
 catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 }
 }

 public static String encrypt(String strToEncrypt, String secret)

16Ray, Dhiraj. “AES Encryption and Decryption in Java(CBC Mode): Java Code Geeks - 2019.” Java Code Geeks, Java
Code Geeks, 12 Mar. 2018, Web. 12 Jun. 2019 <https://www.javacodegeeks.com/2018/03/aes-encryption-and-
decryption-in-javacbc-mode.html>

 34

 {
 try
 {
 setKey(secret);
 Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");
 cipher.init(Cipher.ENCRYPT_MODE, secretKey);
 return
Base64.getEncoder().encodeToString(cipher.doFinal(strToEncrypt.getBytes("UTF-8")));
 }
 catch (Exception e)
 {
 System.out.println("Error while encrypting: " + e.toString());
 }
 return null;
 }

 public static String decrypt(String strToDecrypt, String secret)
 {
 try
 {
 setKey(secret);
 Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5PADDING");
 cipher.init(Cipher.DECRYPT_MODE, secretKey);
 return new
String(cipher.doFinal(Base64.getDecoder().decode(strToDecrypt)));
 }
 catch (Exception e)
 {
 System.out.println("Error while decrypting: " + e.toString());
 }
 return null;
 }

 public static void main(String[] args)
 {
 final String secretKey = "this might be the longest key in the world";

 Scanner obj=new Scanner(System.in);

 String encryptedString = AES.encrypt("Buy me a cake", secretKey) ;
 String decryptedString = AES.decrypt(encryptedString, secretKey) ;

 System.out.println(encryptedString);
 System.out.println(decryptedString);
 long startTime=System.nanoTime();
 long endTime=System.nanoTime();

 System.out.println("The time taken:"+(endTime-startTime));
 }
}

 35

2. Numeric data

import java.io.UnsupportedEncodingException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.*;

import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;

public class AES {

 private static SecretKeySpec secretKey;
 private static byte[] key;

 public static void setKey(String myKey)
 {
 MessageDigest sha = null;
 try {
 key = myKey.getBytes("UTF-8");
 sha = MessageDigest.getInstance("SHA-1");
 key = sha.digest(key);
 key = Arrays.copyOf(key, 16);
 secretKey = new SecretKeySpec(key, "AES");
 }
 catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 }
 }

 public static String encrypt(int intToEncrypt, String secret)
 {
 try
 {
 setKey(secret);
 Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");
 cipher.init(Cipher.ENCRYPT_MODE, secretKey);
 return
Base64.getEncoder().encodeToString(cipher.doFinal(strToEncrypt.getBytes("UTF-8")));
 }
 catch (Exception e)
 {
 System.out.println("Error while encrypting: " + e.toString());
 }
 return null;
 }

 public static String decrypt(String strToDecrypt, String secret)

 36

 {
 try
 {
 setKey(secret);
 Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5PADDING");
 cipher.init(Cipher.DECRYPT_MODE, secretKey);
 return new
String(cipher.doFinal(Base64.getDecoder().decode(strToDecrypt)));
 }
 catch (Exception e)
 {
 System.out.println("Error while decrypting: " + e.toString());
 }
 return null;
 }

 public static void main(String[] args)
 {
 final String secretKey = "this might be the longest key in the world";

 Scanner obj=new Scanner(System.in);

 String encryptedString = AES.encrypt(1234567890, secretKey) ;
 String decryptedString = AES.decrypt(encryptedString, secretKey) ;

 System.out.println(encryptedString);
 System.out.println(decryptedString);
 long startTime=System.nanoTime();
 long endTime=System.nanoTime();

 System.out.println("The time taken:"+(endTime-startTime));
 }
}

3. Alphanumeric data

import java.io.UnsupportedEncodingException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.*;

import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;

public class AES {

 private static SecretKeySpec secretKey;
 private static byte[] key;

 public static void setKey(String myKey)
 {

 37

 MessageDigest sha = null;
 try {
 key = myKey.getBytes("UTF-8");
 sha = MessageDigest.getInstance("SHA-1");
 key = sha.digest(key);
 key = Arrays.copyOf(key, 16);
 secretKey = new SecretKeySpec(key, "AES");
 }
 catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 }
 }

 public static String encrypt(String strToEncrypt, String secret)
 {
 try
 {
 setKey(secret);
 Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");
 cipher.init(Cipher.ENCRYPT_MODE, secretKey);
 return
Base64.getEncoder().encodeToString(cipher.doFinal(strToEncrypt.getBytes("UTF-8")));
 }
 catch (Exception e)
 {
 System.out.println("Error while encrypting: " + e.toString());
 }
 return null;
 }

 public static String decrypt(String strToDecrypt, String secret)
 {
 try
 {
 setKey(secret);
 Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5PADDING");
 cipher.init(Cipher.DECRYPT_MODE, secretKey);
 return new
String(cipher.doFinal(Base64.getDecoder().decode(strToDecrypt)));
 }
 catch (Exception e)
 {
 System.out.println("Error while decrypting: " + e.toString());
 }
 return null;
 }

 public static void main(String[] args)
 {
 final String secretKey = "this might be the longest key in the world";

 38

 Scanner obj=new Scanner(System.in);

 String encryptedString = AES.encrypt("430 Wood Street, 47906, Jakarta2",
secretKey) ;
 String decryptedString = AES.decrypt(encryptedString, secretKey) ;

 System.out.println(encryptedString);
 System.out.println(decryptedString);
 long startTime=System.nanoTime();
 long endTime=System.nanoTime();

 System.out.println("The time taken:"+(endTime-startTime));
 }
}

Program for RSA Encryption Algorithm17:

1. Alphabetical data

import java.io.DataInputStream;
import java.io.IOException;
import java.math.BigInteger;
import java.util.Random;

public class RSA {
 private BigInteger p;
 private BigInteger q;
 private BigInteger N;
 private BigInteger phi;
 private BigInteger e;
 private BigInteger d;
 private int bitlength = 1024;
 private Random r;

 public RSA() {
 r = new Random();
 p = BigInteger.probablePrime(bitlength, r);
 q = BigInteger.probablePrime(bitlength, r);
 N = p.multiply(q);
 phi = p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE));
 e = BigInteger.probablePrime(bitlength / 2, r);
 while (phi.gcd(e).compareTo(BigInteger.ONE) > 0 && e.compareTo(phi) < 0) {

17 “RSA Encryption and Decryption in Java.” Devglan, Devglan, 10 Mar. 2018, Web. 12 Jun. 2019
<https://www.devglan.com/java8/rsa-encryption-decryption-java>

 39

 e.add(BigInteger.ONE);
 }
 d = e.modInverse(phi);
 }

 public RSA(BigInteger e, BigInteger d, BigInteger N) {
 this.e = e;
 this.d = d;
 this.N = N;
 }

 @SuppressWarnings("deprecation")
 public static void main(String[] args) throws IOException {
 RSA rsa = new RSA();
 DataInputStream in = new DataInputStream(System.in);
 String teststring;

 teststring = “buy me a cake”;
 System.out.println("Encrypting String: " + teststring);
 System.out.println("String in Bytes: "
 + bytesToString(teststring.getBytes()));
 // encrypt
 byte[] encrypted = rsa.encrypt(teststring.getBytes());
 // decrypt
 byte[] decrypted = rsa.decrypt(encrypted);
 System.out.println("Decrypting Bytes: " + bytesToString(decrypted));
 System.out.println("Decrypted String: " + new String(decrypted));

 long startTime = System.nanoTime();
 long endTime = System.nanoTime();

 System.out.println("The time taken:" + (endTime - startTime));
 }

 private static String bytesToString(byte[] encrypted) {
 String test = "";
 for (byte b : encrypted) {
 test += Byte.toString(b);
 }
 return test;
 }

 // Encrypt message
 public byte[] encrypt(byte[] message) {
 return (new BigInteger(message)).modPow(e, N).toByteArray();
 }

 // Decrypt message
 public byte[] decrypt(byte[] message) {
 return (new BigInteger(message)).modPow(d, N).toByteArray();
 }
}

 40

BigInteger(message)).modPow(d, N).toByteArray();
 }
}

2. Numeric data
3. import java.io.DataInputStream;

import java.io.IOException;
import java.math.BigInteger;
import java.util.Random;

public class RSA {
 private BigInteger p;
 private BigInteger q;
 private BigInteger N;
 private BigInteger phi;
 private BigInteger e;
 private BigInteger d;
 private int bitlength = 1024;
 private Random r;

 public RSA() {
 r = new Random();
 p = BigInteger.probablePrime(bitlength, r);
 q = BigInteger.probablePrime(bitlength, r);
 N = p.multiply(q);
 phi = p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE));
 e = BigInteger.probablePrime(bitlength / 2, r);
 while (phi.gcd(e).compareTo(BigInteger.ONE) > 0 && e.compareTo(phi) <
0) {
 e.add(BigInteger.ONE);
 }
 d = e.modInverse(phi);
 }

 public RSA(BigInteger e, BigInteger d, BigInteger N) {
 this.e = e;
 this.d = d;
 this.N = N;
 }

 @SuppressWarnings("deprecation")
 public static void main(String[] args) throws IOException {
 RSA rsa = new RSA();
 DataInputStream in = new DataInputStream(System.in);
 int testInt;

 testInt = 123;
 System.out.println("Encrypting String: " + teststring);
 System.out.println("String in Bytes: "
 + bytesToString(teststring.getBytes()));
 // encrypt
 byte[] encrypted = rsa.encrypt(teststring.getBytes());
 // decrypt

 41

 byte[] decrypted = rsa.decrypt(encrypted);
 System.out.println("Decrypting Bytes: " + bytesToString(decrypted));
 System.out.println("Decrypted String: " + new String(decrypted));

 long startTime = System.nanoTime();
 long endTime = System.nanoTime();

 System.out.println("The time taken:" + (endTime - startTime));
 }

 private static String bytesToString(byte[] encrypted) {
 String test = "";
 for (byte b : encrypted) {
 test += Byte.toString(b);
 }
 return test;
 }

 // Encrypt message
 public byte[] encrypt(byte[] message) {
 return (new BigInteger(message)).modPow(e, N).toByteArray();
 }

 // Decrypt message
 public byte[] decrypt(byte[] message) {
 return (new BigInteger(message)).modPow(d, N).toByteArray();
 }
}

4. BigInteger(message)).modPow(d, N).toByteArray();
 }
}

3. Alphanumeric data
4. import java.io.DataInputStream;

import java.io.IOException;
import java.math.BigInteger;
import java.util.Random;

public class RSA {
 private BigInteger p;
 private BigInteger q;
 private BigInteger N;
 private BigInteger phi;
 private BigInteger e;
 private BigInteger d;
 private int bitlength = 1024;
 private Random r;

 public RSA() {
 r = new Random();
 p = BigInteger.probablePrime(bitlength, r);
 q = BigInteger.probablePrime(bitlength, r);
 N = p.multiply(q);
 phi = p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE));

 42

 e = BigInteger.probablePrime(bitlength / 2, r);
 while (phi.gcd(e).compareTo(BigInteger.ONE) > 0 && e.compareTo(phi) <
0) {
 e.add(BigInteger.ONE);
 }
 d = e.modInverse(phi);
 }

 public RSA(BigInteger e, BigInteger d, BigInteger N) {
 this.e = e;
 this.d = d;
 this.N = N;
 }

 @SuppressWarnings("deprecation")
 public static void main(String[] args) throws IOException {
 RSA rsa = new RSA();
 DataInputStream in = new DataInputStream(System.in);
 String teststring;

 teststring = “430 Wood Street, 47906, Jakarta”;
 System.out.println("Encrypting String: " + teststring);
 System.out.println("String in Bytes: "
 + bytesToString(teststring.getBytes()));
 // encrypt
 byte[] encrypted = rsa.encrypt(teststring.getBytes());
 // decrypt
 byte[] decrypted = rsa.decrypt(encrypted);
 System.out.println("Decrypting Bytes: " + bytesToString(decrypted));
 System.out.println("Decrypted String: " + new String(decrypted));

 long startTime = System.nanoTime();
 long endTime = System.nanoTime();

 System.out.println("The time taken:" + (endTime - startTime));
 }

 private static String bytesToString(byte[] encrypted) {
 String test = "";
 for (byte b : encrypted) {
 test += Byte.toString(b);
 }
 return test;
 }

 // Encrypt message
 public byte[] encrypt(byte[] message) {
 return (new BigInteger(message)).modPow(e, N).toByteArray();
 }

 // Decrypt message
 public byte[] decrypt(byte[] message) {
 return (new BigInteger(message)).modPow(d, N).toByteArray();

 43

 }
}

5. BigInteger(message)).modPow(d, N).toByteArray();
 }
}

